[1] GONG D,QIN N,SUN X. Evolutionary algorithms for optimization problems with uncertainties and hybrid indices[J]. Information Sciences,2011,181(19):4124-4138. [2] SIMON D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation,2008,12(6):702-713. [3] 王存睿, 王楠楠, 段晓东, 等. 生物地理学优化算法综述[J]. 计算机科学,2010,37(7):34-38.(WANG C R,WANG N N, DUAN X D,et al. Survey of biogeography-based optimization[J]. Computer Science,2010,37(7):34-38.) [4] GUO W,WANG L,WU Q. An analysis of the migration rates for biogeography-based optimization[J]. Information Sciences,2014, 254:111-140. [5] MO H,XU L. Research of biogeography particle swarm optimization for robot path planning[J]. Neurocomputing,2015,148:91-99. [6] GONG W,CAI Z,LING C X,et al. A real-coded biogeographybased optimization with mutation[J]. Applied Mathematics and Computation,2010,216(9):2749-2758. [7] 江岳春, 何钟南, 刘爱玲. 基于改进BBO算法的风电-水电互补优化运行策略[J]. 电力系统保护与控制,2018,46(10):39-47. (JIANG Y C,HE Z N,LIU A L. A complementary optimal operation strategy of wind power-hydropower based on improved biogeography-based optimization algorithm[J]. Power System Protection and Control,2018,46(10):39-47.) [8] 张文辉, 刘彤, 张延豪, 等. 关于生物地理学算法自适应性能优化研究[J]. 计算机仿真,2018,35(9):277-282.(ZHANG W H,LIU T,ZHANG Y H,et al. Research on biogeography-based optimization algorithm based on self-adaptive performance[J]. Computer Simulation,2018,35(9):277-282.) [9] 陈道君, 龚庆武, 乔卉, 等. 采用改进生物地理学算法的风电并网电力系统多目标发电调度[J]. 中国电机工程学报,2012,32(31):150-158.(CHEN D J,GONG Q W,QIAO H,et al. Multiobjective generation dispatching for wind power integrated system adopting improved biogeography-based optimization algorithm[J]. Proceedings of the CSEE,2012,32(31):150-158.) [10] 鲁宇明, 王彦超, 刘嘉瑞, 等. 一种改进的生物地理学优化算法[J]. 计算机工程与应用,2016,52(17):146-151.(LU Y M, WANG Y C,LIU J R,et al. Improved biogeography-based optimization algorithm[J]. Computer Engineering and Applications, 2016,52(17):146-151.) [11] ZHANG M,JIANG W,ZHOU X,et al. A hybrid biogeography-based optimization and fuzzy C-means algorithm for image segmentation[J]. Soft Computing,2017,23(6):2033-2046. [12] FENG S,YANG Z,HUANG M. Hybridizing adaptive biogeography-based optimization with differential evolution for multi-objective optimization problems[J]. Information-an International Interdisciplinary Journal,2017,8(3):No. 83. [13] 石志标, 葛春雪. 基于CS-BBO优化SVM的汽轮机转子故障诊断[J]. 振动、测试与诊断,2018,38(3):619-626. (SHI Z B, GE C X. Steam turbine rotor fault diagnosis based on SVM optimized by CS-BBO[J]. Journal of Vibration,Measurement and Diagnosis,2018,38(3):619-626.) [14] 陈基漓. 基于高斯变异的生物地理学优化模型[J]. 计算机仿真,2013,30(7):292-295. (CHEN J L. Biogeography-based optimization model based on Gaussian mutation[J]. Computer Simulation,2013,30(7):292-295.) [15] 高嵩, 王磊, 陈超波, 等. 一种改进粒子群优化的分数阶PID参数整定[J]. 控制工程,2017,24(10):44-49.(GAO S,WANG L,CHEN C B,et al. An improved particle swarm optimization algorithm for fractional order PID parameter tuning[J]. Control Engineering of China,2017,24(10):44-49.) [16] 亓祥波, 朱云龙, 张丁一. 求解PFSP的双种群协同学习算法[J]. 控制与决策,2017,32(1):12-20. (QI X B,ZHU Y L, ZHANG D Y. Double population co-learning algorithm for permutation flow-shop scheduling problems[J]. Control and Decision, 2017,32(1):12-20.) [17] 蒋婷婷, 韩维, 苏析超. 基于改进DE算法的舰载机保障调度优化[J]. 计算机仿真,2018,35(10):51-56. (JIANG T T,HAN W,SU X C. Optimization of carrier aircraft support scheduling based on improved DE algorithm[J]. Computer Simulation,2018, 35(10):51-56.) [18] 赵凤, 郑月, 刘汉强, 等. 多种群联合的多目标进化自适应阈值图像分割算法[J]. 计算机应用研究,2018,35(6):1858-1862. (ZHAO F,ZHENG Y,LIU H Q,et al. Multi-population cooperation-based multi-objective evolutionary algorithm for adaptive thresholding image segmentation[J]. Application Research of Computers,2018,35(6):1858-1862.) [19] 范朝冬, 任柯, 易灵芝, 等. 双种群分子动理论优化算法[J]. 计算机工程与科学,2018,40(4):723-730.(FAN C D,REN K, YI L Z,et al. A dual population based molecular kinetic theory optimization algorithm[J]. Computer Engineering and Science, 2018,40(4):723-730.) [20] 陈亚峰, 张晓明, 曹国清, 等. 双种群协同下带混沌闪烁机制的萤火虫算法研究[J]. 西安交通大学学报,2018,52(3):153-159.(CHEN Y F,ZHANG X M,CAO G Q,et al. A firefly algorithm with chaotic flicker mechanism under double population collaboration[J]. Journal of Xi'an Jiaotong University,2018,52(3):153-159.) [21] 慕彩红, 焦李成, 刘逸. M-精英协同进化数值优化算法[J]. 软件学报,2009,20(11):2925-2938. (MU C H,JIAO L C,LIU Y. M-elite coevolutionary algorithm for numerical optimization[J]. Journal of Software,2009,20(11):2925-2938.) [22] 汤伟, 白志雄, 高祥. 基于自适应变异DE算法的PID参数整定优化[J]. 组合机床与自动化加工技术,2018(3):124-127. (TANG W,BAI Z X,GAO X. Optimization design for PID controller based on adaptive mutation DE algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technique,2018(3):124-127.) [23] CHEN X,TIANFIELD H,DU W,et al. Biogeography-based optimization with covariance matrix based migration[J]. Applied Soft Computing,2016,45:71-85. |