[1] LONG J,SHELHAMER E,DARRELL T. Fully convolutionalnetworks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [2] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutionalnetworks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [3] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutionalnets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [4] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. Semantic image segmentation with deep convolutionalnets and fully connected CRFs[EB/OL].[2019-12-29]. https://arxiv.org/pdf/1412.7062.pdf. [5] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2019-12-29]. https://arxiv.org/pdf/1706.05587.pdf. [6] DU X,WANG X,LI D,et al. Boundary-sensitivenetwork for portrait segmentation[EB/OL].[2019-12-29]. https://arxiv.org/pdf/1712.08675.pdf. [7] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520. [8] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [9] BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [10] ZHANG Z,ZHANG X,CHAO P,et al. ExFuse:enhancing feature fusion for semantic segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11214. Cham:Springer,2018:273-288. [11] ZHAO H,SHI J,QI X,et al. Pyramid scene parsingnetwork[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6230-6239. [12] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neuralnetworks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [13] DEMPSTER A P,LAIRD N M,RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B(Methodological),1977,39(1):1-22. [14] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neuralnetworks for mobile vision applications[EB/OL].[2019-12-29]. https://arxiv.org/pdf/1704.04861.pdf. [15] 王本杰, 农丽萍, 张文辉, 等. 基于Spider卷积的三维点云分类与分割网络[J]. 计算机应用, 2020, 40(6):1607-1612.(WANG B J, NONG L P, ZHANG W H, et al. 3D point cloud classification and segmentationnetwork based on Spider convolution[J]. Journal of Computer Applications,2020,40(6):1607-1612.) [16] LI X, ZHONG Z, WU J, et al. Expectation-maximization attentionnetworks for semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:9166-9175. [17] 赵杨璐, 段丹丹, 胡饶敏, 等. 基于EM算法的混合模型中子总体个数的研究[J]. 数理统计与管理, 2020, 39(1):35-50. (ZHAO Y L,DUAN D D,HU R M,et al. On the number ofcomponents in mixture model based on EM algorithm[J]. Journal of Applied Statistics and Management,2020,39(1):35-50.) [18] HE K,ZHANG X,REN S,et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [19] ZHANG S,DONG X,LI H,et al. PortraitNet:real-time portrait segmentationnetwork for mobile device[J]. Computers and Graphics,2019,80:104-113. [20] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [21] 杨威, 张建林, 徐智勇, 等. 一种改进的Focal Loss在语义分割上的应用[J]. 半导体光电, 2019, 40(4):555-559.(YANG W, ZHANG J L,XU Z Y,et al. An improved focal loss function for semantic segmentation[J]. Journal of Semiconductor Optoelectronics,2019,40(4):555-559.) [22] XU N,PRICE B,COHEN S,et al. Deep image matting[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:311-320 [23] SHEN X,HERTZMANN A,JIA J,et al. Automatic portrait segmentation for image stylization[J]. Computer Graphics Forum,2016,35(2):93-102. [24] PASZKE A,CHAURASIA A,KIM S,et al. ENet:a deep neuralnetwork architecture for real-time semantic segmentation[EB/OL].[2020-03-16]. https://arxiv.org/pdf/1606.02147.pdf. [25] YU C,WANG J,PENG C,et al. BiSeNet:bilateral segmentationnetwork for real-time semantic segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham:Springer,2018:334-349. |