| 1 | 季长清,高志勇,秦静,等.基于卷积神经网络的图像分类算法综述[J].计算机应用,2022, 42(4): 1044-1049. | 
																													
																						|  | JI C Q, GAO Z Y, QIN J, et al. Review of image classification algorithms based on convolutional neural networks[J]. Journal of Computer Applications,2022, 42(4): 1044-1049. | 
																													
																						| 2 | 冯志伟.神经网络、深度学习与自然语言处理[J].上海师范大学学报(哲学社会科学版),2021, 50(2): 110-122. | 
																													
																						|  | FENG Z W. Artificial neural network, deep learning, and natural language processing[J]. Journal of Shanghai Normal University (Philosophy & Social Sciences Edition),2021, 50(2): 110-122. | 
																													
																						| 3 | 李思敏, 谷宇, 张宝华, 等. 基于改进ResNeXt的肺癌病理图像分类[J]. 计算机工程与设计, 2023, 44(8): 2439-2446. | 
																													
																						|  | LI S M, GU Y, ZHANG B H, et al. Lung cancer pathological image classification based on improved ResNeXt[J]. Computer Engineering and Design, 2023, 44(8): 2439-2446. | 
																													
																						| 4 | 张开生,赵小芬. 复杂环境下自适应深度神经网络的鲁棒语音识别[J]. 计算机工程与科学, 2022, 44(6): 1105-1113. | 
																													
																						|  | ZHANG K S, ZHAO X F. Robust speech recognition based on adaptive deep neural network in complex environment[J]. Computer Engineering & Science,2022, 44(6): 1105-1113. | 
																													
																						| 5 | 梁应敞,谭俊杰, NIYATO D.智能无线通信技术研究概况[J].通信学报,2020, 41(7): 1-17. | 
																													
																						|  | LIANG Y C, TAN J J, NIYATO D. Overview on intelligent wireless communication technology[J]. Journal on Communications,2020, 41(7): 1-17. | 
																													
																						| 6 | XIE X, NI Y, PENG S, et al. Deep learning based automatic modulation classification for varying SNR environment[C]// Proceedings of the 2019 28th Wireless and Optical Communications Conference. Piscataway: IEEE, 2019: 1-5. | 
																													
																						| 7 | 陈梦轩,张振永,纪守领,等.图像对抗样本研究综述[J].计算机科学, 2022, 49(2): 92-106. | 
																													
																						|  | CHEN M X, ZHANG Z Y, JI S L, et al. Survey of research progress on adversarial examples in images[J]. Computer Science, 2022, 49(2): 92-106. | 
																													
																						| 8 | YU J A, PENG L. Black-box attacks on DNN classifier based on fuzzy adversarial examples[C]// Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing. Piscataway:IEEE, 2020: 965-969. | 
																													
																						| 9 | 胡明雪,王磊, ZERWAS J.基于遗传算法的数据中心流量对抗样本生成方法[J].计算机应用, 2022, 42(): 146-151. | 
																													
																						|  | HU M X, WANG L, ZERWAS J. Data center traffic adversarial samples generation method based on genetic algorithm[J].Journal of Computer Applications, 2022, 42(S1): 146-151. | 
																													
																						| 10 | YANG X, LIN J, ZHANG H, et al. Improving the transferability of adversarial examples via direction tuning[J].Information Sciences,2023, 647: 119491. | 
																													
																						| 11 | LIU Y, LIU Y, YANG C. Modulation recognition with graph convolutional network[J]. IEEE Wireless Communications Letters, 2020, 9(5): 624-627. | 
																													
																						| 12 | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]// Proceedings of the 17th International Conference on Engineering Applications of Neural Networks. Cham: Springer, 2016: 213-226. | 
																													
																						| 13 | MENG F, CHEN P, WU L. Automatic modulation classification: a deep learning enabled approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10760-10772. | 
																													
																						| 14 | 翁建新,赵知劲,占锦敏.利用并联CNN-LSTM的调制样式识别算法[J].信号处理, 2019, 35(5): 870-876. | 
																													
																						|  | WENG J X, ZHAO Z J, ZHAN J M. Modulation recognition algorithm by using parallel CNN-LSTM[J]. Journal of Signal Processing, 2019, 35(5): 870-876. | 
																													
																						| 15 | 庞伊琼,许华,蒋磊,等.基于元学习的小样本调制识别算法[J].空军工程大学学报(自然科学版), 2022, 23(5): 77-82. | 
																													
																						|  | PANG Y Q, XU H, JIANG L, et al. A few-shot modulation recognition algorithm based on meta-learning[J].Journal of Air Force Engineering University, 2022, 23(5): 77-82. | 
																													
																						| 16 | JEONG S, LEE U, KIM S C. Spectrogram-based automatic modulation recognition using convolution neural network[C]// Proceedings of 2018 10th International Conference on Ubiquitous and Future Networks. Piscataway: IEEE, 2018: 843-845. | 
																													
																						| 17 | LI Y, SHAO G, WANG B. Automatic modulation classification based on bispectrum and CNN[C]// Proceedings of 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference. Piscataway: IEEE, 2019:311-316. | 
																													
																						| 18 | KHAN F N, ZHONG K, AL-ARASHI W H, et al. Modulation format identification in coherent receivers using deep machine learning[J]. IEEE Photonics Technology Letters, 2016, 28(17): 1886-1889. | 
																													
																						| 19 | 李红光,郭英,眭萍,等.基于时频特征的卷积神经网络跳频调制识别[J].浙江大学学报(工学版), 2020, 54(10): 1945-1954. | 
																													
																						|  | LI H G, GUO Y, SUI P, et al. Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics[J].Journal of Zhejiang University (Engineering Science), 2020, 54(10): 1945-1954. | 
																													
																						| 20 | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL].(2014-02-19)[2023-08-20].. | 
																													
																						| 21 | 闫嘉乐,徐洋,张思聪,等.图像分类模型的对抗样本攻防研究综述[J].计算机工程与应用,2022, 58(23): 24-41. | 
																													
																						|  | YAN J L, XU Y, ZHANG S C, et al. Survey of research on adversarial examples attack and defense in image classification model[J].Computer Engineering and Applications,2022, 58(23): 24-41. | 
																													
																						| 22 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL].(2015-03-20)[2023-08-20].. | 
																													
																						| 23 | KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial examples in the physical world[EB/OL].(2017-02-11)[2023-08-20].. | 
																													
																						| 24 | DONG Y, LIAO F, PANG T, et al. Boosting adversarial attacks with momentum[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9185-9193. | 
																													
																						| 25 | MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL].(2019-09-04)[2023-08-20].. | 
																													
																						| 26 | SADEGHI M, LARSSON E G. Adversarial attacks on deep learning based radio signal classification[J]. IEEE Wireless Communications Letters, 2019, 8(1): 213-216. | 
																													
																						| 27 | ZHAO H, LIN Y, GAO S, et al. Evaluating and improving adversarial attacks on DNN-based modulation recognition[C]// Proceedings of 2020 IEEE Global Communications Conference. Piscataway:IEEE,2020:1-5. | 
																													
																						| 28 | 陶明亮,唐舒婷,王伶.面向智能调制识别的电磁信号灵巧诱骗方法[J].信号处理, 2022, 38(12): 2496-2506. | 
																													
																						|  | TAO M L, TANG S T, WANG L. Radio signal smart deception method for intelligent modulation classification[J].Journal of Signal Processing,2022, 38(12): 2496-2506. | 
																													
																						| 29 | KIM B, SAGDUYU Y E, DAVASLIOGLU K, et al. Channel-aware adversarial attacks against deep learning-based wireless signal classifiers[J]. IEEE Transactions on Wireless Communications,2022, 21(6): 3868-3880. | 
																													
																						| 30 | XIE H, TAN J, ZHANG X Y, et al. Low-interception waveform: to prevent the recognition of spectrum waveform modulation via adversarial example[C]// Proceedings of 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science. Piscataway: IEEE, 2021: 1-4. |