[1] GOERTZEL B. Artificial general intelligence:concept,state of the art, and future prospects[J]. Journal of Artificial General Intelligence,2014,5(1):1-48. [2] HURWITZ J S,KAUFMAN M,BOWLES A. Cognitive Computing and Big Data Analytics[M]. Indianapolis:Wiley,2015:6-12. [3] PAN Y H. Heading toward artificial intelligence 2.0[J]. Engineering,2016,2(4):409-413. [4] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报,2016,45(4):589-606.(XU Z L,SHENG Y P,HE L R,et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China,2016,45(4):589-606.) [5] HECKERMAN D,GEIGER D,CHICKERING D M. Learning Bayesian networks:the combination of knowledge and statistical data[J]. Machine Learning,1995,20(3):197-243. [6] 张仲伟, 曹雷, 陈希亮, 等. 基于神经网络的知识推理研究综述[J]. 计算机工程与应用,2019,55(12):8-19,36.(ZHANG Z W,CAO L,CHEN X L,et al. Survey of knowledge reasoning based on neural network[J]. Computer Engineering and Applications,2019,55(12):8-19,36.) [7] SOCHER R,CHEN D,MANNING C D,et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:926-934. [8] SHI B,WENINGER T. ProjE:embedding projection for knowledge graph completion[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Pal,Alto,CA:AAAI Press,2017:1236-1242. [9] SHEN Y,HUANG P S,CHANG M W,et al. Modeling large-scale structured relationships with shared memory for knowledge base completion[C]//Proceedings of the 2nd Workshop on Representation Learning for NLP. Stroudsburg,PA:Association for Computational Linguistics,2017:57-68. [10] GRAVES A,WAYNE G,DANIHELKA I. Neural turing machines[EB/OL].[2019-08-17]. https://arxiv.org/pdf/1410.5401.pdf. [11] GRAVES A, WAYNE G, REYNOLDS M, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature,2016,538(7626):471-476. [12] SINGHAL A. Introducing the Knowledge Graph:things, not strings[EB/OL].[2019-06-12]. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/. [13] 王子涵, 邵明光, 刘国军, 等. 基于实体相似度信息的知识图谱补全算法[J]. 计算机应用,2018,38(11):3089-3093. (WANG Z H,SHAO M G,LIU G J,et al. Knowledge graph completion algorithm based on similarity between entities[J]. Journal of Computer Applications,2018,38(11):3089-3093.) [14] CHEN X,JIA S,XIANG Y. A review:knowledge reasoning over knowledge graph[J]. Expert Systems with Applications,2020, 141:No. 112948. [15] CHAN A,MA L,JUEFEI-XU F,et al. Metamorphic relation based adversarial attacks on differentiable neural computer[EB/OL].[2019-12-28]. https://arxiv.org/pdf/1809.02444.pdf. [16] PEARL J. Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M]. San Francisco:Morgan Kaufmann Publishers Inc.,1988:12-39. [17] 翟社平, 郭琳, 高山, 等. 一种采用贝叶斯推理的知识图谱补全方法[J]. 小型微型计算机系统,2018,39(5):995-999.(ZHAI S P, GUO L, GAO S, et al. Method for knowledge graph completion based on Bayesian reasoning[J]. Journal of Chinese Computer Systems,2018,39(5):995-999.) [18] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [19] MING Y,PELUSI D,FANG C N,et al. EEG data analysis with stacked differentiable neural computers[J]. Neural Computing and Applications,2020,32(12):7611-7621. [20] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2018:1811-1818. [21] TOUTANOVA K,CHEN D. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. Stroudsburg, PA:Association for Computational Linguistics,2015:57-66. [22] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:2787-2795. [23] YANG B,YIH W T,HE X,et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2020-02-14]. https://arxiv.org/pdf/1412.6575.pdf. |