[1] TANG C,CAO L,ZHENG X,et al. Gene selection for microarray data classification via subspace learning and manifold regularization[J]. Medical and Biological Engineering and Computing,2018,56(7):1271-1284. [2] ZHANG Y,ZHOU G,JIN J,et al. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis[J]. International Journal of Neural Systems, 2014, 24(4):No. 1450013. [3] SAUL L K,ROWEIS S T. Think globally,fit locally:unsupervised learning of low dimensional manifolds[J]. Journal of Machine Learning Research,2003,4:119-155. [4] ZHU X,ZHANG L,HUANG Z. A sparse embedding and least variance encoding approach to hashing[J]. IEEE Transactions on Image Processing,2014,23(9):3737-3750. [5] ZHANG Z,BAI L,LIANG Y,et al. Joint hypergraph learning and sparse regression for feature selection[J]. Pattern Recognition, 2017,63:291-309. [6] HE X,CAI D,NIYOGI P. Laplacian score for feature selection[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2005:507-514. [7] YANG Y, SHEN H T, MA Z, et al. L2, 1-norm regularized discriminative feature selection for unsupervised learning[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2011:1589-1594. [8] CAI D,ZHANG C,HE X. Unsupervised feature selection for multicluster data[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2010:333-342. [9] LI Z,YANG Y,LIU J,et al. Unsupervised feature selection using nonnegative spectral analysis[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press, 2012:1026-1032. [10] HOU C,NIE F,LI X,et al. Joint embedding learning and sparse regression:a framework for unsupervised feature selection[J]. IEEE Transactions on Cybernetics,2014,44(6):793-804. [11] NIE F, ZHU W, LI X. Unsupervised feature selection with structured graph optimization[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2016:1302-1308. [12] GUO J, ZHU W. Dependence guided unsupervised feature selection[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:2232-2239. [13] LUO M,NIE F,CHANG X,et al. Adaptive unsupervised feature selection with structure regularization[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(4):944-956. [14] NIE F, LI J, LI X. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2017:2564-2570. [15] HE X, NIYOGI P. Locality preserving projections[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2003:153-160. [16] CAI D,HE X,HAN J. Spectral regression:a unified approach for sparse subspace learning[C]//Proceedings of the 7th IEEE International Conference on Data Mining. Piscataway:IEEE, 2007:73-82. [17] GU Q,LI Z,HAN J. Joint feature selection and subspace learning[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2011:1294-1299. [18] DU L,SHEN Y. Unsupervised feature selection with adaptive structure learning[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2015:209-218. [19] HE L,CHAO Y,SUZUKI K,et al. Fast connected-component labeling[J]. Pattern Recognition,2009,42(9):1977-1987. [20] MOHAR B. The Laplacian spectrum of graphs[J]. Graph Theory, Combinatorics,and Applications,1991,2:871-898. [21] WANG D,NIE F,HUANG H. Unsupervised feature selection via unified trace ratio formulation and K-means clustering(TRACK)[C]//Proceedings of the 2014 Joint European Conference on Machine Learning and Knowledge Discovery in Databases,LNCS 8726. Berlin:Springer,2014:306-321. [22] CAI X,NIE F,HUANG H. Exact top-k feature selection via l2, 0-norm constraint[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2013:1240-1246. [23] 周志华. 机器学习[M]. 北京:清华大学出版社,2016:237-238. (ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press,2016:237-238.) [24] NIE F, WANG X, HUANG H. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:977-986. [25] WEINBERGER K Q, SAUL L K. Fast solvers and efficient implementations for distance metric learning[C]//Proceedings of the 25th International Conference on Machine Learning. New York:ACM,2008:1160-1167. [26] FAN K. On a theorem of weyl concerning eigenvalues of linear transformations I[J]. Proceedings of the National Academy of Sciences of the United States of America,1949,35(11):652-655. [27] LI H,WANG M,HUA X. MSRA-MM 2.0:a large-scale Web multimedia dataset[C]//Proceedings of the 2009 IEEE International Conference on Data Mining Workshops. Piscataway:IEEE,2009:164-169. [28] AT&T Laboratories Cambridge. The database of faces[DB/OL].[2020-06-13]. http://cam-orl.co.uk/facedatabase.html. [29] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720. [30] NANE S A,NAYAR S K,MURASE H. Columbia Object Image Library (COIL-20),CUCS-005-96[R]. New York:Columbia University,1996. [31] SINGH D, FEBBO P G, ROSS K, et al. Gene expression correlates of clinical prostate cancer behavior[J]. Cancer Cell, 2002,1(2):203-209. [32] HULL J J. A database for handwritten text recognition research[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(5):550-554. [33] ZENG H,CHEUNG Y M. Feature selection and kernel learning for local learning-based clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(8):1532-1547. [34] 高新波. 模糊聚类分析及其应用[M]. 西安:西安电子科技大学出版社,2004:43-44.(GAO X B. Fuzzy Cluster Analysis and its Applications[M]. Xi'an:Xidian University Press,2004:43-44.) |