1 王卫卫,李小平,冯象初,等.稀疏子空间聚类综述[J].自动化学报,2015,41(8):1373-1384. WANGW W, LIX P, FENGX C, et al. A survey on sparse subspace clustering [J]. Acta Automatica Sinica, 2015, 41(8):1373-1384. 2 章永来,周耀鉴.聚类算法综述[J].计算机应用,2019,39(7):1869-1882. ZHANGY L, ZHOUY J. Review of clustering algorithms [J]. Journal of Computer Applications, 2019, 39(7): 1869-1882. 3 万静,郑龙君,何云斌,等.高维不确定数据的子空间聚类算法[J]. 计算机应用, 2019, 39(11):3280-3287. WANJ, ZHENGL J, HEY B, et al. Subspace clustering algorithm for high dimensional uncertain data [J]. Journal of Computer Applications, 2019, 39(11):3280-3287. 4 DINGS, JIAH, DUM, et al. A semi-supervised approximate spectral clustering algorithm based on HMRF model [J]. Information Sciences, 2018, 429: 215-228. 5 ELHAMIFARE, VIDALR. Sparse subspace clustering [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2790-2797. 6 LUC, FENGJ, LINZ, et al. Subspace clustering by block diagonal representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 487-501. 7 ZHUX, ZHANGS, LIY, et al. Low-rank sparse subspace for spectral clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(8): 1532-1543. 8 LIUG, LINZ, YANS, et al. Robust recovery of subspace structures by low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. 9 NASIHATKONB, HARTLEYR. Graph connectivity in sparse subspace clustering [C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 2137-2144. 10 NASHEDM Z, WALTERG G. General sampling theorems for functions in reproducing kernel Hilbert spaces [J]. Mathematics of Control, Signals and Systems, 1991, 4(4): 363-390. 11 SCHÖLKOPFB, SMOLAA, MüLLERK R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 1299-1319. 12 DUL, ZHOUP, SHIL, et al. Robust multiple kernel K-means using l2,1-norm [C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2015: 3476-3482. 13 HUANGJ, NIEF, HUANGH. A new simplex sparse learning model to measure data similarity for clustering [C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2015: 3569-3575. 14 王少华,狄岚,梁久祯.基于核与局部信息的多维度模糊聚类图像分割算法[J].计算机应用,2015,35(11):3227-3231,3237. WANGS H, DIL, LIANGJ Z. Multi-dimensional fuzzy clustering image segmentation algorithm based on kernel metric and local information [J]. Journal of Computer Applications, 2015, 35(11): 3227-3231, 3237. 15 HUANGH C, CHUANGY Y, CHENC S. Multiple kernel fuzzy clustering [J]. IEEE Transactions on Fuzzy Systems, 2011, 20(1): 120-134. 16 XUZ, JINR, KINGI, et al. An extended level method for efficient multiple kernel learning [C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2008: 1825-1832. 17 KANGZ, LUX, YIJ, et al. Self-weighted multiple kernel learning for graph-based clustering and semi-supervised classification[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2018: 2312-2318. 18 KANGZ, PENGC, CHENGQ, et al. Unified spectral clustering with optimal graph [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2018: 3366-3373. 19 KANGZ, WENL, CHENW, et al. Low-rank kernel learning for graph-based clustering [J]. Knowledge-Based Systems, 2019, 163: 510-517. 20 LIUG, LINZ, YUY. Robust subspace segmentation by low-rank representation [EB/OL]. [2019-01-11].http://people.eecs.berkeley.edu/~yima/matrix-rank/Files/lrr.pdf. 21 ELHAMIFARE, VIDALR. Sparse subspace clustering: algorithm, theory, and applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. 22 BECKA. On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes [J]. SIAM Journal on Optimization, 2015, 25(1): 185-209. |