[1] ZHANG Y L,JIANG H X,LI X W,et al. A new framework combining local-region division and feature selection for microexpressions recognition[J]. IEEE Access,2020,8:94499-94509. [2] XIA Z Q,PENG W,KHOR H Q,et al. Revealing the invisible with model and data shrinking for composite-database microexpression recognition[J]. IEEE Transactions on Image Processing,2020,29:8590-8605. [3] TAKALKAR M,XU M,WU Q,et al. A survey:facial microexpression recognition[J]. Multimedia Tools and Applications, 2018,77(15):19301-19325. [4] LI X B,HONG X P,MOILANEN A,et al. Towards reading hidden emotions:a comparative study of spontaneous microexpression spotting and recognition methods[J]. IEEE Transactions on Affective Computing,2018,9(4):563-577. [5] 张延良, 卢冰, 洪晓鹏, 等. 基于局部区域方法的微表情识别[J]. 计算机应用,2019,39(5):1282-1287.(ZHANG Y L,LU B, HONG X P,et al. Micro-expression recognition based on local region method[J]. Journal of Computer Applications,2019,39(5):1282-1287.) [6] LI X B,PFISTER T,HUANG X H,et al. A spontaneous microexpression database:inducement,collection and baseline[C]//Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Piscataway:IEEE,2013:1-6. [7] XU F,ZHANG J P,WANG J Z. Microexpression identification and categorization using a facial dynamics map[J]. IEEE Transactions on Affective Computing,2017,8(2):254-267. [8] LIU Y J,ZHANG J K,YAN W J,et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE Transactions on Affective Computing,2016,7(4):299-310. [9] LIU Y J, LI B J, LAI Y K. Sparse MDMO:learning a discriminative feature for spontaneous micro-expression recognition[J]. IEEE Transactions on Affective Computing,2021,12(1):254-261. [10] PENG M,WU Z,ZHANG Z H,et al. From macro to micro expression recognition:deep learning on small datasets using transfer learning[C]//Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway:IEEE,2018:657-661. [11] KHOR H Q,SEE J,PHAN R C W,et al. Enriched long-term recurrent convolutional network for facial micro-expression recognition[C]//Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway:IEEE,2018:667-674. [12] PENG M,WANG C Y,BI T,et al. A novel Apex-Time Network for cross-dataset micro-expression recognition[C]//Proceedings of the 8th International Conference on Affective Computing and Intelligent Interaction. Piscataway:IEEE,2019:1-6. [13] HUANG J,ZHAO X R,ZHENG L M. SHCFNet on microexpression recognition system[C]//Proceedings of the 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway:IEEE, 2020:163-168. [14] ZHOU L,MAO Q R,XUE L Y. Cross-database micro-expression recognition:a style aggregated and attention transfer approach[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo Workshops. Piscataway:IEEE, 2019:102-107. [15] PAN H,XIE L,LV Z P,et al. Hierarchical support vector machine for facial micro-expression recognition[J]. Multimedia Tools and Applications,2020,79(41/42):31451-31465. [16] QUANG N V,CHUN J,TOKUYAMA T. CapsuleNet for microexpression recognition[C]//Proceedings of the 14th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway:IEEE,2019:1-7. [17] CHEN Y P,LI J N,XIAO H X,et al. Dual path networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2017:4470-4478. [18] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer, 2018:3-19. [19] HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:770-778. [20] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报,2019,42(3):453-482. (ZHANG S,GONG Y H,WANG J J. The development of deep convolution neural network and its applications computer vision[J]. Chinese Journal of Computers,2019,42(3):453-482.) [21] ZHU Y,NEWSAM S. DenseNet for dense flow[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway:IEEE,2017:790-794. [22] XIE S N,GIRSHICK R,DOLLÁR P,et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5987-5995. [23] 吴仁彪, 赵娅倩, 屈景怡, 等. 基于CBAM-CondenseNet的航班延误波及预测模型[J]. 电子与信息学报,2021,43(1):187-195. (WU R B,ZHAO Y Q,QU J Y,et al. Flight delay propagation prediction model based on CBAM-CondenseNet[J]. Journal of Electronics and Information Technology,2021,43(1):187-195.) [24] KANG X D,ZHUO B B,DUAN P H. Dual-path network-based hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(3):447-451. [25] YAN W J,LI X B,WANG S J,et al. CASME Ⅱ:an improved spontaneous micro-expression database and the baseline evaluation[J]. PLoS ONE,2014,9(1):No. e86041. [26] DAVISION A K,LANSLEY C,COSTEN N,et al. SAMM:a spontaneous micro-facial movement dataset[J]. IEEE Transactions on Affective Computing,2018,9(1):116-129. [27] ZHANG K P,ZHANG Z P,LI Z F,et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503. [28] GEITGEY A. Face_recognition[EB/OL].[2020-10-30]. https://github.com/ageitgey/face_recognition. [29] SELVARAJU R R,COGSWELL M,DAS A,et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision,2020, 128(2):336-359. |