[1] HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing-a key technology towards 5G:ETSI White Paper No. 11[R]. Sophia Antipolis:European Telecommunications Standards Institute, 2015:1-16. [2] SABELLA D, MOUSTAFA H, KUURE P, et al. White paper:toward fully connected vehicles:edge computing for advanced automotive communications[R]. Munich:5G Automotive Association, 2017. [3] MACH P, BECVAR Z. Mobile edge computing:a survey on architecture and computation offloading[J]. IEEE Communications Surveys and Tutorials, 2017, 19(3):1628-1656. [4] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing:the communication perspective[J]. IEEE Communications Surveys and Tutorials, 2017, 19(4):2322-2358. [5] SARDELLITTI S, SCUTARI G, BARBAROSSA S. Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal and Information Processing over Networks, 2015, 1(2):89-103. [6] HU X Y, WANG L F, WONG K K, et al. Edge and central cloud computing:a perfect pairing for high energy efficiency and lowlatency[J]. IEEE Transactions on Wireless Communications, 2020, 19(2):1070-1083. [7] YOU C S, HUANG K B, CHAE H. Energy efficient mobile cloud computing powered by wireless energy transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5):1757-1771. [8] MAO Y Y, ZHANG J, LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12):3590-3605. [9] HU X Y, WONG K K, YANG K. Wireless powered cooperationassisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2018, 17(4):2375-2388. [10] WANG F, XU J, WANG X, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(3):1784-1797. [11] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles:opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5):36-42. [12] 吴启晖, 吴伟. 无人机辅助边缘计算的能量效率最大化算法设计[J]. 通信学报, 2020, 41(10):15-24.(WU Q H, WU W. Algorithm design on energy efficiency maximization for UAVassisted edge computing[J]. Journal on Communications, 2020, 41(10):15-24.) [13] ZHOU F H, WU Y P, HU R Q Y, et al. Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9):1927-1941. [14] CAO X W, XU J, ZHANG R. Mobile edge computing for cellularconnected UAV:computation offloading and trajectory optimization[C]//Proceedings of the IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications. Piscataway:IEEE, 2018:1-5. [15] WANG L, HUANG P Q, WANG K Z, et al. RL-based user association and resource allocation for multi-UAV enabled MEC[C]//Proceedings of the 15th International Wireless Communications and Mobile Computing Conference. Piscataway:IEEE, 2019:741-746. [16] JEONG S, SIMEONE O, KANG J. Mobile edge computing via a UAV-mounted cloudlet:optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3):2049-2063. [17] YANG D C, WU Q Q, ZENG Y, et al. Energy tradeoff in groundto-UAV communication via trajectory design[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7):6721-6726. [18] ZENG Y, XU J, ZHANG R. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4):2329-2345. [19] 张梦琳, 江沸菠, 董莉, 等. 智能无人机轨迹与任务卸载联合优化[J]. 计算机工程与应用, 2020, 56(21):38-46.(ZHANG M L, JIANG F B, DONG L, et al. Joint optimization of intelligent UAV trajectory and task offload[J]. Computer Engineering and Applications, 2020, 56(21):38-46.) [20] 李莹雪. 面向无人机协同部署的轨迹优化技术研究[D]. 邯郸:河北工程大学, 2020:29-34. (LI Y X. Research on trajectory optimization technology for UAV collaborative deployment[D]. Handan:Hebei University of Engineering, 2020:29-34.) [21] ZENG Y, ZHANG R. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6):3747-3760. [22] ZAPPONE A, BJÖRNSON E, SANGUINETTI L, et al. Globally optimal energy-efficient power control and receiver design in wireless networks[J]. IEEE Transactions on Signal Processing, 2017, 65(11):2844-2859. [23] PEREZ R E, JANSEN P W, MARTINS J R R A. pyOpt:a Python-based object-oriented framework for nonlinear constrained optimization[J]. Structural and Multidisciplinary Optimization, 2012, 45(1):101-118. |