[1] Cisco. Cisco annual internet report(2018-2023)white paper[EB/OL].[2020-07-09]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paperc11-741490. html. [2] 王广增. 关于5G移动通信关键技术的分析及其未来发展前景分析[J]. 中国新通信, 2015, 17(19):56.(WANG G Z. Analysis of 5G mobile communication key technologies and analysis of their future development prospects[J]. China New Telecommunications, 2015,17(19):56.) [3] OUGHTON E, FRIAS Z, RUSSELL T, et al. Towards 5G:scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure[J]. Technological Forecasting and Social Change,2018,133:141-155. [4] 抖音短视频APP. 2019年抖音数据报告[EB/OL].[2020-07-09]. https://lmtw.com/mzw/content/detail/id/180878. (Douyin short video APP. 2019 Douyin data report[EB/OL].[2020-07-09]. https://lmtw.com/mzw/content/detail/id/180878.) [5] ZHANG M,LUO H,ZHANG H. A survey of caching mechanisms in information-centric networking[J]. IEEE Communications Surveys and Tutorials,2015,17(3):1473-1499. [6] LI C,TONI L,ZOU J,et al. QoE-driven mobile edge caching placement for adaptive video streaming[J]. IEEE Transactions on Multimedia,2018,20(4):965-984. [7] 王舒平, 张毅, 韦文闻, 等. 内容分发网络预取技术综述[J]. 电子技术应用, 2019, 45(4):23-28.(WANG S P,ZHANG Y,WEI W W,et al. Overview of prefetching technology in content deliver networks[J]. Application of Electronic Technique,2019,45(4):23-28.) [8] ULLAH S,THAR K,HONG C S. Management of scalable video streaming in information centric networking[J]. Multimedia Tools and Applications,2017,76(20):21519-21546. [9] 柳兴, 杨震, 王新军, 等. 移动边缘计算中的内容分发加速策略[J]. 计算机应用, 2020, 40(5):1389-1391.(LIU X,YANG Z, WANG X J,et al. Content distribution acceleration strategy in mobile edge computing[J]. Journal of Computer Applications, 2020,40(5):1389-1391.) [10] CHEN M,LEUNG V C M. From cloud-based communications to cognition-based communications:a computing perspective[J]. Computer Communications,2018,128:74-79. [11] CHEN M,HAO Y,LIN K,et al. Label-less learning for traffic control in an edge network[J]. IEEE Network,2018,32(6):8-14. [12] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature, 2015,521(7553):436. [13] DEVOOGHT R, BERSINI H. Collaborative filtering with recurrent neural networks[EB/OL].[2020-07-09]. https://arxiv.org/pdf/1608.07400.pdf. [14] LI C,LIU J,OUYANG S. Characterizing and predicting the popularity of online videos[J]. IEEE Access,2016,4:1630-1641. [15] LIU W,ZHANG J,LIANG Z,et al. Content popularity prediction and caching for ICN:a deep learning approach with SDN[J]. IEEE Access,2018,6:5075-5089. [16] CHEN M,SAAD W,YIN C,et al. Echo state networks for proactive caching in cloud-based radio access networks with mobile users[J]. IEEE Transactions on Wireless Communications,2017,16(6):3520-3535. [17] TSAI K C,WANG L,HAN Z,et al. Mobile social media networks caching with convolutional neural network[C]//Proceedings of the 2018 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE,2018:83-88. [18] THAR K,TRAN N H,OO T Z,et al. DeepMEC:mobile edge caching using deep learning[J]. IEEE Access,2018,6:78260-78275. [19] BONAWITZ K,EICHNER H,GRIESKAMP W,et al. Towards federated learning at scale:system design[EB/OL].[2020-07-09]. https://arxiv.org/pdf/1902.01046.pdf. [20] WANG S,TUOR T,SALONIDIS T,et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications,2019,37(6):1205-1221. [21] HAO Y,HU L,QIAN Y,et al. Profit maximization for video caching and processing in edge cloud[J]. IEEE Journal on Selected Areas in Communications,2019,37(7):1632-1641. [22] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-07-09]. https://arxiv.org/pdf/1704.04861.pdf. [23] CHEN W, WANG Y, YUAN Y. Combinatorial multi-armed bandit:general framework, results and applications[C]//Proceedings of the 2013 30th International Conference on Machine Learning. New York:JMLR. org,2013:151-159. |