计算机应用 ›› 2021, Vol. 41 ›› Issue (6): 1551-1556.DOI: 10.11772/j.issn.1001-9081.2020121936

所属专题: 2020年全国开放式分布与并行计算学术年会(DPCS 2020)

• 2020年全国开放式分布与并行计算学术年会(DPCS 2020) • 上一篇    下一篇

基于联邦学习的在线短视频内容分发策略

董文涛1,2, 李卓1,2, 陈昕2   

  1. 1. 网络文化与数字传播北京市重点实验室(北京信息科技大学), 北京 100101;
    2. 北京信息科技大学 计算机学院, 北京 100101
  • 收稿日期:2020-11-04 修回日期:2021-03-29 出版日期:2021-06-10 发布日期:2021-06-21
  • 通讯作者: 李卓
  • 作者简介:董文涛(1995-),男,山东菏泽人,硕士研究生,主要研究方向:边缘计算;李卓(1983-),男,河南南阳人,副教授,博士,CCF会员,主要研究方向:移动无线网络、分布式计算;陈昕(1965-),男,江西南昌人,教授,博士,CCF会员,主要研究方向:网络性能评价、网络安全。
  • 基金资助:
    国家自然科学基金资助项目(61872044);北京市青年拔尖人才培育计划资助项目(CIT&TCD201804055);网络文化与数字传播北京市重点实验室开放课题资助项目(ICDDXN001)。

Online short video content distribution strategy based on federated learning

DONG Wentao1,2, LI Zhuo1,2, CHEN Xin2   

  1. 1. Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(Beijing Information Science and Technology University), Beijing 100101, China;
    2. Computer School, Beijing Information Science and Technology University, Beijing 100101, China
  • Received:2020-11-04 Revised:2021-03-29 Online:2021-06-10 Published:2021-06-21
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61872044), the Beijing Municipal Program for Young Top Talent Cultivation (CIT&TCD201804055),the Open Program of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research (ICDDXN001).

摘要: 为提升短视频内容分发的精度,分析用户所属社交群体的兴趣倾向和对短视频内容的个性化需求,在基于主动推荐方式的短视频应用场景中,以视频内容提供商利润最大化为优化目标,设计了一种短视频内容分发策略。首先,基于联邦学习,利用用户群本地相册数据训练兴趣预测模型,提出用户群兴趣向量预测算法并得到用户群的兴趣向量表示;然后,以用户群的兴趣向量作为输入,基于组合置信上界(CUCB)算法实时设计相应的短视频内容分发策略,从而使视频内容提供商获取的长期利润最大化。所提策略获得的平均利润相对稳定且明显优于单纯基于CUCB的短视频分发策略得到的平均利润;与置信上界(UCB)策略和随机策略相比,所提策略使得视频内容提供商获得的总利润分别提高了12%和30%。实验结果表明,所提短视频内容分发策略能有效地提升短视频分发的精度,从而进一步提高视频内容提供商获取的利润。

关键词: 移动边缘计算, 内容分发, 联邦学习, 短视频, 用户群兴趣向量

Abstract: To improve the accuracy of short video content distribution, the interest tendencies and the personalized demands for short video content of social groups that the users belong to were analyzed, and in the short video application scenarios based on the active recommendation approaches, a short video content distribution strategy was designed with the goal of maximizing the profit of video content providers. Firstly, based on the federated learning, the interest prediction model was trained by using the local album data of the user group, and the user group interest vector prediction algorithm was proposed and the interest vector representation of the user group was obtained. Secondly, using the interest vector as the input, the corresponding short video content distribution strategy was designed in real time based on the Combinatorial Upper Confidence Bound (CUCB) algorithm, so that the long-term profit obtained by the video content providers was maximized. The average profit obtained by the proposed strategy is relatively stable and significantly better than that obtained by the short video distribution strategy only based on CUCB; in terms of total profit of video providers, compared with the Upper Confidence Bound (UCB) strategy and random strategy, the proposed strategy increases by 12% and 30% respectively. Experimental results show that the proposed short video content distribution strategy can effectively improve the accuracy of short video distribution, so as to further increase the profit obtained by video content providers.

Key words: mobile edge computing, content distribution, federated learning, short video, user group interest vector

中图分类号: