《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (1): 50-56.DOI: 10.11772/j.issn.1001-9081.2021010185
所属专题: 人工智能
董永峰1,2,3, 屈向前1,2,3, 李林昊1,2,3(), 董瑶1,2,3
Yongfeng DONG1,2,3, Xiangqian QU1,2,3, Linhao LI1,2,3(), Yao DONG1,2,3
摘要:
针对投稿刊物推荐算法总是单独考虑文本主题或者作者历史发刊记录,导致投稿刊物推荐结果准确率低的问题,提出了一种基于作者偏好的学术刊物投稿推荐算法。该算法不仅协调使用了文本主题和作者历史发刊记录,还挖掘了投稿刊物的学术焦点与时间的潜在联系。首先,使用潜在狄利克雷(LDA)主题模型对文章标题进行主题提取;其次,建立主题-刊物和时间-刊物的模型图,并采用大规模信息网络嵌入(LINE)模型学习异构图节点的嵌入;最后,融合作者的主题偏好和历史发刊记录来计算刊物的综合得分,并据此对投稿作者进行投稿刊物推荐。在两个公开数据集DBLP和PubMed上的实验结果表明,相比奇异值分解(SVD)、DeepWalk、非负矩阵分解(NMF)等6个算法,所提出的算法在不同推荐的投稿刊物列表长度的情况下的召回率均为最优,并且在需要从论文和知识库中获取更少信息的同时,保持了较高的准确性,能有效提高投稿刊物推荐算法的鲁棒性。
中图分类号: