《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (8): 2161-2186.DOI: 10.11772/j.issn.1001-9081.2021040662
• 人工智能 • 下一篇
收稿日期:
2021-04-26
修回日期:
2021-06-03
发布日期:
2021-08-06
出版日期:
2021-08-10
通讯作者:
田玲
作者简介:
田玲(1981-),女,四川成都人,教授,博士,CCF会员,主要研究方向:知识驱动的人工智能、事件预测;张谨川(1998-),男,江西鹰潭人,博士研究生,主要研究方向:时间序列分析、知识图谱;张晋豪(1998-),男,重庆人,博士研究生,主要研究方向:知识图谱、知识图谱问答;周望涛(1997-),男,重庆人,博士研究生,主要研究方向:社交媒体分析、事件预测;周雪(1995-),女,四川成都人,博士研究生,主要研究方向:知识图谱、表示学习。
TIAN Ling1, ZHANG Jinchuan1, ZHANG Jinhao2, ZHOU Wangtao1, ZHOU Xue2
Received:
2021-04-26
Revised:
2021-06-03
Online:
2021-08-06
Published:
2021-08-10
摘要: 针对知识图谱(KG)在知识驱动的人工智能研究中发挥的强大支撑作用,分析并总结了现有知识图谱和知识超图技术。首先,从知识图谱的定义与发展历程出发,介绍了知识图谱的分类和架构;其次,对现有的知识表示与存储方式进行了阐述;然后,基于知识图谱的构建流程,分析了各类知识图谱构建技术的研究现状。特别是针对知识图谱中的知识推理这一重要环节,分析了基于逻辑规则、嵌入表示和神经网络的三类典型的知识推理方法。此外,以异构超图引出知识超图的研究进展,并提出三层架构的知识超图,从而更好地表示和提取超关系特征,实现对超关系数据的建模及快速的知识推理。最后,总结了知识图谱和知识超图的典型应用场景并对未来的研究作出了展望。
中图分类号:
田玲, 张谨川, 张晋豪, 周望涛, 周雪. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186.
TIAN Ling, ZHANG Jinchuan, ZHANG Jinhao, ZHOU Wangtao, ZHOU Xue. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186.
[1] Wikipedia. Google Knowledge Graph[EB/OL].[2021-02-14]. https://en.wikipedia.org/wiki/Google_Knowledge_Graph. [2] SINGHAL A. Introducing the knowledge graph:things,not strings[EB/OL].[2020-01-09]. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/. [3] MILLER G A. WordNet:a lexical database for English[J]. Communications of the ACM,1995,38(11):39-41. [4] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5:an open multilingual graph of general knowledge[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:4444-4451. [5] BOLLACKER K,COOK R,TUFTS P. Freebase:a shared database of structured general human knowledge[C]//Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2007:1962-1963. [6] Wikidata. Main Page of Wikidata[EB/OL].[2020-11-11]. https://www.wikidata.org/wiki/Wikidata:Main_Page. [7] NIU X,SUN X R,WANG H F,et al. Zhishi. me-weaving Chinese linking open data[C]//Proceedings of the 2011 International Semantic Web Conference, LNCS 7032. Berlin:Springer,2011:205-220. [8] XU B,XU Y,LIANG J Q,et al. CN-DBpedia:a never-ending Chinese knowledge extraction system[C]//Proceedings of the 2017 International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,LNCS 10351. Cham:Springer,2017:428-438. [9] 星河."星河"军事知识图谱[EB/OL].[2020-08-01]. https://starkg.starsee.cn/. (StarSee. Starkg[EB/OL].[2020-08-01]. https://starkg.starsee.cn/.) [10] IBM. Watson Health医疗保健数据分析的重要性[EB/OL].[2021-03-15]. https://www.ibm.com/cn-zh/watson-health/learn/healthcare-data-analytics. (IBM. Watson Health-healthcare data analytics[EB/OL].[2021-03-15]. https://www.ibm.com/cnzh/watson-health/learn/healthcare-data-analytics.) [11] 海致星图. 海致星图金融知识图谱[EB/OL].[2021-03-05]. https://www.stargraph.cn/technology.html. (StarGraph. StarGraph financial knowledge graph[EB/OL].[2021-03-05]. https://www.stargraph.cn/technology. html.) [12] 海信网络科技. 交管云脑[EB/OL].[2021-03-01]. https://www.hisense-transtech.com.cn/Urban_Transport/Solution/1048.html. (Hisense TransTech. Cloud brain for traffic management[EB/OL].[2021-03-01]. https://www.hisense-transtech.com.cn/Urban_Transport/Solution/1048.html.) [13] SMULLYAN R M. First-Order Logic[M]. Mineola,NY:Dover Publications,1995:43-65. [14] GUPTA G. Horn logic denotations and their applications[M]//APT K R,MAREK V W,TRUSZCZYNSKI M,et al. The Logic Programming Paradigm:A 25-Year Perspective. Berlin:Springer,1999:127-159. [15] QUILLAN M R. Semantic memory[R]. Cambridge:Bolt Beranek and Newman Inc.,1966. [16] POST E L. Formal reductions of the general combinatorial decision problem[J]. American Journal of Mathematics,1943,65(2):197-215. [17] MINSKY M. A framework for representing knowledge[R]. Cambridge:Massachusetts Institute of Technology, A. I. Laboratory,1974. [18] TOMKINS S S. Script theory:differential magnification of affects[J]. Nebraska Symposium on Motivation,1978,26:201-236. [19] W3C. Extensible Markup Language(XML)[EB/OL].[2020-10-11]. https://www.w3.org/XML/. [20] W3C. Resource Description Framework(RDF)[EB/OL].[2020-02-25]. https://www.w3.org/RDF/. [21] W3C. RDF Schema 1.1[EB/OL].[2020-03-22]. https://www.w3.org/TR/rdf-schema/. [22] W3C. OWL[EB/OL].[2020-12-11]. https://www.w3.org/OWL/. [23] The Apache Software Foundation. Apache Jena[DB/OL].[2021-03-25]. https://jena.apache.org/. [24] Eclipse Foundation. RDF4J[DB/OL].[2021-03-26]. https://rdf4j.org/. [25] 北京大学王选计算机研究所数据管理实验室. gStore[DB/OL].[2021-03-01]. http://www.gstore.cn/pcsite/index.html#/. (PKUMOD. gStore[EB/OL].[2021-03-01]. http://www.gstore.cn/pcsite/index.html#/.) [26] The PostgreSQL Global Development Group. PostgreSQL[DB/OL].[2021-03-15]. https://www.postgresql.org/. [27] Oracle. MySQL[DB/OL].[2021-03-26]. https://www.mysql.com/. [28] Neo4j. Neo4[j DB/OL].[2021-02-26]. https://neo4j.com/. [29] The Linux Foundation. JanusGraph[DB/OL].[2021-03-08]. https://janusgraph.org/. [30] HugeGraph. HugeGraph[DB/OL].[2021-03-29]. https://github.com/hugegraph/hugegraph. [31] DOWNEY D,BROADHEAD M,ETZIONI O. Locating complex named entities in Web text[C]//Proceedings of the 20th International Joint Conferences on Artificial Intelligence. San Francisco:Morgan Kaufmann Publishers Inc.,2007:2733-2739. [32] BIKEL D M,MILLER S,SCHWARTZ R,et al. Nymble:a highperformance learning name-finder[C]//Proceedings of the 5th Conference on Applied Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 1997:194-201. [33] McCALLUM A,LI W. Early results for named entity recognition with conditional random fields, feature induction and webenhanced lexicons[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. Stroudsburg, PA:Association for Computational Linguistics,2003:188-191. [34] BORTHWICK A E. A maximum entropy approach to named entity recognition[D]. New York:New York University,1999:18-24. [35] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing(almost) from scratch[J]. Journal of Machine Learning Research,2011,12:2493-2537. [36] STRUBELL E,VERGA P,BELANGER D,et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2017:2670-2680. [37] HUANG Z,XU W,YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. (2015-08-09)[2020-12-22]. https://arxiv.org/pdf/1508.01991.pdf. [38] ŽUKOV-GREGORIČ A, BACHRACH Y, COOPE S. Named entity recognition with parallel recurrent neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:69-74. [39] 杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程,2020,46(4):40-45,52.(YANG P,DONG W Y. Chinese named entity recognition method based on BERT embedding[J]. Computer Engineering, 2020, 46(4):40-45,52.) [40] LIN B Y C,LEE D H,SHEN M,et al. TriggerNER:learning with entity triggers as explanations for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2020:8503-8511. [41] SCHUTZ A,BUITELAAR P. RelExt:a tool for relation extraction from text in ontology extension[C]//Proceedings of the 2005 International Semantic Web Conference,LNCS 3729. Berlin:Springer,2005:593-606. [42] ZENG D J,LIU K,LAI S W,et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics:Technical Papers. Dublin:Dublin City University, Association for Computational Linguistics,2014:2335-2344. [43] NGUYEN T H,GRISHMAN R. Relation extraction:perspective from convolutional neural networks[C]//Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2015:39-48. [44] KUANG J,CAO Y X,ZHENG J B,et al. Improving neural relation extraction with implicit mutual relations[C]//Proceedings of the IEEE 36th International Conference on Data Engineering. Piscataway:IEEE,2020:1021-1032. [45] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA:Association for Computational Linguistics,2012:1201-1211. [46] XU Y,MOU L L,LI G,et al. Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2015:1785-1794. [47] GENG Z Q,CHEN G F,HAN Y M,et al. Semantic relation extraction using sequential and tree-structured LSTM with attention[J]. Information Sciences,2020,509:183-192. [48] SHEN Y T,HUANG X J. Attention-based convolutional neural network for semantic relation extraction[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers.[S. l.]:The COLING 2016 Organizing Committee,2016:2526-2536. [49] LIN Y K,SHEN S Q,LIU Z Y,et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2016:2124-2133. [50] JI G L,LIU K,HE S Z,et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:3060-3066. [51] LI Y,LONG G D,SHEN T,et al. Self-attention enhanced selective gate with entity-aware embedding for distantly supervised relation extraction[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2020:8269-8276. [52] ZHANG Y H,QI P,MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:2205-2215. [53] GUO Z J, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2019:241-251. [54] SAHU S K,THOMAS D,CHIU B,et al. Relation extraction with self-determined graph convolutional network[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York:ACM,2020:2205-2208. [55] WU Y, BAMMAN D, RUSSELL S. Adversarial training for relation extraction[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2017:1778-1783. [56] WANG X Z,HAN X,LIN Y K,et al. Adversarial multi-lingual neural relation extraction[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2018:1156-1166. [57] 冯冲, 康丽琪, 石戈, 等. 融合对抗学习的因果关系抽取[J]. 自动化学报,2018,44(5):811-818.(FENG C,KANG L Q,SHI G,et al. Causality extraction with GAN[J]. Acta Automatica Sinica,2018,44(5):811-818.) [58] QIN P D,XU W R,WANG W Y. DSGAN:generative adversarial training for distant supervision relation extraction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:496-505. [59] QIN P D,XU W R,WANG W Y. Robust distant supervision relation extraction via deep reinforcement learning[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:2137-2147. [60] TAKANOBU R,ZHANG T Y,LIU J X,et al. A hierarchical framework for relation extraction with reinforcement learning[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:7072-7079. [61] XIAO Y,TAN C X,FAN Z J,et al. Joint entity and relation extraction with a hybrid transformer and reinforcement learning based model[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2020:9314-9321. [62] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:1105-1116. [63] ZHENG S,WANG F,BAO H,et al. Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2017:1227-1236. [64] ZHENG S C,HAO Y X,LU D Y,et al. Joint entity and relation extraction based on a hybrid neural network[J]. Neurocomputing, 2017,257:59-66. [65] 陈仁杰, 郑小盈, 祝永新. 融合实体类别信息的实体关系联合抽取方法[J/OL]. 计算机工程. (2021-03-25)[2021-05-28]. https://doi.org/10.19678/j.issn.1000-3428.0060745. (CHEN R J,ZHENG X Y,ZHU Y X. Joint entity and relation extraction via fusing entity type information[J/OL]. Computer Engineering. (2021-03-25)[2021-05-28]. https://doi.org/10.19678/j.issn.1000-3428.0060745.) [66] NAYAK T, NG H T. Effective modeling of encoder-decoder architecture for joint entity and relation extraction[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2020:8528-8535. [67] RAJU S,PINGALI P,VARMA V. An unsupervised approach to product attribute extraction[C]//Proceedings of the 2009 European Conference on Information Retrieval, LNCS 5478. Berlin:Springer,2009:796-800. [68] SHINZATO K,SEKINE S. Unsupervised extraction of attributes and their values from product description[C]//Proceedings of the 6th International Joint Conference on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2013:1339-1347. [69] ZHAO G,ZHANG T,WANG C X,et al. Applications of BERT based sequence tagging models on Chinese medical text attributes extraction[EB/OL]. (2020-08-22)[2020-12-11]. https://arxiv.org/pdf/2008.09740.pdf. [70] JIANG M,SHANG J B,CASSIDY T,et al. MetaPAD:meta pattern discovery from massive text corpora[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2017:877-886. [71] LOGAN R L IV,HUMEAU S,SINGH S. Multimodal attribute extraction[C]//Proceedings of the 6th Workshop on Automated Knowledge Base Construction at NIPS 2017. Red Hook,NY:Curran Associates Inc.,2017:No. 19. [72] COHEN W W,RICHMAN J. Learning to match and cluster large high-dimensional data sets for data integration[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2002:475-480. [73] SUN Z Q,HU W,ZHANG Q H,et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conferences on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:4396-4402. [74] ZHANG Q H,SUN Z Q,HU W,et al. Multi-view knowledge graph embedding for entity alignment[C]//Proceedings of the 28th International Joint Conferences on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:5429-5435. [75] TRISEDYA B D,QI J Z,ZHANG R. Entity alignment between knowledge graphs using attribute embeddings[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2019:297-304. [76] 车超, 刘迪. 利用双向对齐和属性信息的跨语言实体对齐[J/OL]. 计算机工程. (2021-03-23)[2021-05-31]. https://doi.org/10.19678/j.issn.1000-3428.0060540. (CHE C,LIU D. Crosslanguage entity alignment combined with attribute information through bidirectional alignment[J/OL]. Computer Engineering. (2021-03-23)[2021-05-31]. https://doi.org/10.19678/j.issn.1000-3428.0060540.) [77] ZUHEROS C,TABIK S,VALDIVIA A,et al. Deep recurrent neural network for geographical entities disambiguation on social media data[J]. Knowledge-Based Systems,2019,173:117-127. [78] GANEA O E,HOFMANN T. Deep joint entity disambiguation with local neural attention[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2017:2619-2629. [79] ZHU G G,IGLESIAS C A. Exploiting semantic similarity for named entity disambiguation in knowledge graphs[J]. Expert Systems with Applications,2018,101:8-24. [80] 张晟旗, 王元龙, 李茹, 等. 基于局部注意力机制的中文短文本实体链接[J/OL]. 计算机工程. (2020-11-19)[2021-05-31]. https://doi.org/10.19678/j.issn.1000-3428.0059493. (ZHANG S Q,WANG Y L,LI R,et al. Entity linking based on local attention mechanism for Chinese short text[J]. Computer Engineering. (2020-11-19)[2021-05-31]. https://doi.org/10.19678/j.issn.1000-3428.0059493.) [81] BECHHOFER S,HORROCKS I,GOBLE C,et al. OilEd:a reasonable ontology editor for the semantic web[C]//Proceedings of the 2001 Annual Conference on Artificial Intelligence,LNCS 2174. Berlin:Springer,2001:396-408. [82] ARPÍREZ J C,CORCHO O,FERNÁNDEZ-LÓPEZ M,et al. WebODE:a scalable workbench for ontological engineering[C]//Proceedings of the 1st International Conference on Knowledge Capture. New York:ACM,2001:6-13. [83] SURE Y, ERDMANN M, ANGELE J, et al. OntoEdit:collaborative ontology development for the semantic Web[C]//Proceedings of the 2002 International Semantic Web Conference, LNCS 2342. Berlin:Springer,2002:221-235. [84] NOY N F,FERGERSON R W,MUSEN M A. The knowledge model of Protégé-2000:combining interoperability and flexibility[C]//Proceedings of the 2000 International Conference on Knowledge Engineering and Knowledge Management, LNCS 1937. Berlin:Springer,2000:17-32. [85] McBRIDE B. Jena:a semantic Web toolkit[J]. IEEE Internet Computing,2002,6(6):55-59. [86] RICHARDSON S D, DOLAN W B, VANDERWENDE L. MindNet:acquiring and structuring semantic information from text[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics/17th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,1998:1098-1102. [87] ZENG X R,HE S Z,LIU K,et al. Large scaled relation extraction with reinforcement learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:5658-5665. [88] FENG J,HUANG M L,ZHAO L,et al. Reinforcement learning for relation classification from noisy data[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:5779-5786. [89] RICHARDSON M,DOMINGOS P. Markov logic networks[J]. Machine Learning,2006,62(1/2):107-136. [90] PUJARA J,MIAO H,GETOOR L,et al. Knowledge graph identification[C]//Proceedings of the 2013 International Semantic Web Conference. Berlin:Springer,2013:542-557. [91] KUŽELKA O,DAVIS J. Markov logic networks for knowledge base completion:a theoretical analysis under the MCAR assumption[C]//Proceedings of the 35th Uncertainty in Artificial Intelligence Conference. New York:JMLR. org,2020:1138-1148. [92] LEE T W,LEWICKI M S,GIROLAMI M,et al. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE Signal Processing Letters,1999,6(4):87-90. [93] HALASCHEK-WIENER C, PARSIA B, SIRIN E, et al. Description logic reasoning for dynamic ABoxes[C]//Proceedings of the 2006 International Workshop on Description Logic. Aachen:CEUR-WS. org,2006:No. 27. [94] CALVANESE D,DE GIACOMO G,LEMBO D,et al. Epistemic first-order queries over description logic knowledge bases[C]//Proceedings of the 2006 International Workshop on Description Logics. Aachen:CEUR-WS. org,2006:No. 17. [95] LI Y H,XU B W,LU J J,et al. Discrete tableau algorithms for FSHI[C]//Proceedings of the 2006 International Workshop on Description Logics. Aachen:CEUR-WS. org,2006:No. 14. [96] STOILOS G,STAMOU G,PAN J Z,et al. Reasoning with very expressive fuzzy description logics[J]. Journal of Artificial Intelligence Research,2007,30:273-320. [97] KRÖTZSCH M, MARX M, OZAKI A, et al. Attributed description logics:reasoning on knowledge graphs[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:5309-5313. [98] 胡博, 王智学, 董庆超, 等. 基于描述逻辑的上下文知识获取与推理方法[J]. 计算机科学,2013,40(4):199-203.(HU B, WANG Z X, DONG Q C, et al. Context-aware knowledge acquisition and reasoning based on description logic[J]. Computer Science,2013,40(4):199-203.) [99] BIENVENU M,BOURGAUX C,GOASDOUÉ F. Computing and explaining query answers over inconsistent DL-Lite knowledge bases[J]. Journal of Artificial Intelligence Research,2019,64:563-644. [100] SCHOENMACKERS S,DAVIS J,ETZIONI O,et al. Learning first-order Horn clauses from Web text[C]//Proceedings of the 2010 Conference on Empirical Methods on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2010:1088-1098. [101] LANDWEHR N, KERSTING K, DE RAEDT L. nFOIL:integrating naïve Bayes and FOIL[C]//Proceedings of the 20th National Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2005:795-800. [102] LANDWEHR N,PASSERINI A,DE RAEDT L,et al. Fast learning of relational kernels[J]. Machine Learning,2010,78(3):305-342. [103] GALÁRRAGA L A,TEFLIOUDI C,HOSE K,et al. AMIE:association rule mining under incomplete evidence in ontological knowledge bases[C]//Proceedings of the 22nd International Conference on World Wide Web. New York:ACM,2013:413-422. [104] GALÁRRAGA L,TEFLIOUDI C,HOSE K,et al. Fast rule mining in ontological knowledge bases with AMIE+[J]. The VLDB Journal,2015,24(6):707-730. [105] WANG Z C,LI J Z. RDF2Rules:learning rules from RDF knowledge bases by mining frequent predicate cycles[EB/OL]. (2015-12-24)[2021-03-21]. https://arxiv.org/pdf/1512.07734.pdf. [106] TANON T P, STEPANOVA D, RAZNIEWSKI S, et al. Completeness-aware rule learning from knowledge graphs[C]//Proceedings of the 2017 International Semantic Web Conference, LNCS 10587. Cham:Springer,2017:507-525. [107] OMRAN P G,WANG K W,WANG Z. Scalable rule learning via learning representation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:2149-2155. [108] 李智星, 任诗雅, 王化明, 等. 基于非结构化文本增强关联规则的知识推理方法[J]. 计算机科学,2019,46(11):209-215. (LI Z X,REN S Y,WANG H M,et al. Knowledge reasoning method based on unstructured text-enhanced association rules[J]. Computer Science,2019,46(11):209-215.) [109] LAO N,MITCHELL T,COHEN W W. Random walk inference and learning in a large scale knowledge base[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2011:529-539. [110] LAO N,MINKOV E,COHEN W W. Learning relational features with backward random walks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics/the 7th International Joint Conference on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2015:666-675. [111] WANG Q,LIU J,LUO Y F,et al. Knowledge base completion via coupled path ranking[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistic. Stroudsburg, PA:Association for Computational Linguistics, 2016:1308-1318. [112] 陈钦况, 陈珂, 伍赛, 等. 关于主动学习下的知识图谱补全研究[J]. 计算机科学与探索,2020,14(5):769-782.(CHEN Q K,CHEN K,WU S,et al. Research about knowledge graph completion based on active learning[J]. Journal of Frontiers of Computer Science and Technology,2020,14(5):769-782.) [113] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展,2016,53(2):247-261.(LIU Z Y,SUN M S,LIN Y K,et al. Knowledge representation learning:a review[J]. Journal of Computer Research and Development,2016,53(2):247-261.) [114] GARDNER M, MITCHELL T. Efficient and expressive knowledge base completion using subgraph feature extraction[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2015:1488-1498. [115] LIU Q,JIANG L Y,HAN M H,et al. Hierarchical random walk inference in knowledge graphs[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2016:445-454. [116] 刘峤, 韩明皓, 江浏祎, 等. 基于双层随机游走的关系推理算法[J]. 计算机学报,2017,40(6):1275-1290.(LIU Q,HAN M H,JIANG L Y,et al. Two-tier random walk based relational inference algorithm[J]. Chinese Journal of Computers,2017,40(6):1275-1290.) [117] NICKEL M,TRESP V,KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning. Madison,WI:Omnipress,2011:809-816. [118] NICKEL M,TRESP V. Tensor factorization for multi-relational learning[C]//Proceedings of the 2013 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 8190. Berlin:Springer,2013:617-621. [119] NICKEL M,TRESP V,KRIEGEL H P. Factorizing YAGO:scalable machine learning for linked data[C]//Proceedings of the 21st International Conference on World Wide Web. New York:ACM,2012:271-280. [120] RENDLE S,SCHMIDT-THIEME L. Pairwise interaction tensor factorization for personalized tag recommendation[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York:ACM,2010:81-90. [121] RENDLE S. Scaling factorization machines to relational data[J]. Proceedings of the VLDB Endowment,2013,6(5):337-348. [122] JENATTON R,LE ROUX N,BORDES A,et al. A latent factor model for highly multi-relational data[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2012:3167-3175. [123] BORDES A,WESTON J,COLLOBERT R,et al. Learning structured embeddings of knowledge bases[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2011:301-306. [124] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:2787-2795. [125] XIAO H,HUANG M L,ZHU X Y. From one point to a manifold:knowledge graph embedding for precise link prediction[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:1315-1321. [126] FENG J,HUANG M L,WANG M D,et al. Knowledge graph embedding by flexible translation[C]//Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning. Palo Alto,CA:AAAI Press, 2016:557-560. [127] QIAN W,FU C,ZHU Y,et al. Translating embeddings for knowledge graph completion with relation attention mechanism[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:4286-4292. [128] XIAO H,HUANG M L,YU H,et al. TransA:an adaptive approach for knowledge graph embedding[EB/OL]. (2015-09-28)[2020-08-11]. https://arxiv. org/pdf/1509.05490. pdf. [129] WANG Z,ZHANG J W,FENG J L,et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2014:1112-1119. [130] LIN Y K,LIU Z Y,SUN M S,et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2015:2181-2187. [131] JI G L,HE S Z,XU L H,et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics/the 7th International Joint Conference on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2015:687-696. [132] JI G L,LIU K,HE S Z,et al. Knowledge graph completion with adaptive transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:985-991. [133] 方阳, 赵翔, 谭真, 等. 一种改进的基于翻译的知识图谱表示方法[J]. 计算机研究与发展,2018,55(1):139-150.(FANG Y,ZHAO X,TAN Z,et al. A revised translation-based method for knowledge graph representation[J]. Journal of Computer Research and Development,2018,55(1):139-150.) [134] HE S Z,LIU K,JI G L,et al. Learning to represent knowledge graphs with Gaussian embedding[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York:ACM,2015:623-632. [135] XIAO H,HUANG M L,ZHU X Y. TransG:a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2016:2316-2325. [136] SUN Z Q,DENG Z H,NIE J Y,et al. Rotate:knowledge graph embedding by relational rotation in complex space[EB/OL]. (2019-02-26)[2020-05-11]. https://arxiv.org/pdf/1902.10197.pdf. [137] EBISU T,ICHISE R. TorusE:knowledge graph embedding on a Lie group[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:1819-1826. [138] 金婧, 万怀宇, 林友芳. 融合实体类别信息的知识图谱表示学习[J]. 计算机工程,2021,47(4):77-83.(JIN J,WAN H Y, LIN Y F. Knowledge graph representation learning fused with entity category information[J]. Computer Engineering,2021,47(4):77-83.) [139] 彭敏, 黄婷, 田纲, 等. 聚合邻域信息的联合知识表示模型[J]. 中文信息学报,2021,35(5):46-54.(PENG M,HUANG T,TIAN G,et al. Neighborhood aggregation for knowledge graph representation[J]. Journal of Chinese Information Processing, 2021,35(5):46-54.) [140] 夏光兵, 李瑞轩, 辜希武, 等. 融合多源信息的知识表示学习[J/OL]. 计算机科学与探索. (2021-05-26)[2021-06-01]. http://kns.cnki.net/kcms/detail/11.5602.TP.20210525.1633.006.html. (XIA G B, LI R X,GU X W,et al. Knowledge representation learning based on multi-source information combination[J/OL]. Journal of Frontiers of Computer Science and Technology. (2021-05-26)[2021-06-01]. http://kns.cnki.net/kcms/detail/11.5602.TP.20210525.1633.006.html.) [141] GARCÍA-DURÁN A, BORDES A, USUNIER N. Effective blending of two and three-way interactions for modeling multirelational data[C]//Proceedings of the 2014 European Conference on Machine Learning and Knowledge Discovery in Databases,LNCS 8724. Berlin:Springer,2014:434-449. [142] YANG B S,YIH S W,HE X D,et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2015-08-29)[2020-11-11]. https://arxiv.org/pdf/1412.6575.pdf. [143] 张金斗. 知识图谱分布式表示学习方法及应用研究[D]. 合肥:中国科学技术大学,2021:24-43.(ZHANG J D. Learning methods and application of knowledge graph distributed representation[D]. Hefei:University of Science and Technology of China,2021:24-43.) [144] NICKEL M,ROSASCO L,POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:1955-1961. [145] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org,2016:2071-2080. [146] ZHANG S,TAY Y,YAO L N,et al. Quaternion knowledge graph embeddings[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems. La Jolla,CA:Neural Information Processing Systems Foundation,2019:2731-2741. [147] LIU H X,WU Y X,YANG Y M. Analogical inference for multirelational embeddings[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:2168-2178. [148] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data:application to word-sense disambiguation[J]. Machine Learning, 2014,94(2):233-259. [149] SOCHER R,CHEN D Q,MANNING C D,et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:926-934. [150] DONG X,GABRILOVICH E,HEITZ G,et al. Knowledge vault:a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:601-610. [151] LIU Q, JIANG H, EVDOKIMOV A, et al. Probabilistic reasoning via deep learning:neural association models[EB/OL]. (2016-08-03)[2020-11-12]. https://arxiv.org/pdf/1603.07704.pdf. [152] XIE R B,LIU Z Y,JIA J,et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:2659-2665. [153] SHI B X, WENINGER T. Open-world knowledge graph completion[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Pal Alto,CA:AAAI Press,2018:1957-1964. [154] 鲍开放, 顾君忠, 杨静. 基于结构与文本联合表示的知识图谱补全方法[J]. 计算机工程,2018,44(7):205-211.(BAO K F,GU J Z,YANG J. Knowledge graph completion method based on jointly representation of structure and text[J]. Computer Engineering,2018,44(7):205-211.) |
[1] | 余敦辉, 万鹏, 王社. 基于企业知识图谱构建的实体关联查询系统[J]. 计算机应用, 2021, 41(9): 2510-2516. |
[2] | 刘雅璇, 钟勇. 基于头实体注意力的实体关系联合抽取方法[J]. 计算机应用, 2021, 41(9): 2517-2522. |
[3] | 余敦辉, 张蕗怡, 张笑笑, 毛亮. 基于知识图谱和重启随机游走的跨平台用户推荐方法[J]. 计算机应用, 2021, 41(7): 1871-1877. |
[4] | 刘欢, 李晓戈, 胡立坤, 胡飞雄, 王鹏华. 基于知识图谱驱动的图神经网络推荐模型[J]. 计算机应用, 2021, 41(7): 1865-1870. |
[5] | 秦丽, 郝志刚, 李国亮. 国家食品安全标准图谱的构建及关联性分析[J]. 计算机应用, 2021, 41(4): 1005-1011. |
[6] | 孙建强, 许少华. 基于可微神经计算机和贝叶斯网络的知识推理方法[J]. 计算机应用, 2021, 41(2): 337-342. |
[7] | 董永峰, 刘超, 王利琴, 李英双. 融合多跳关系路径信息的关系推理方法[J]. 计算机应用, 2021, 41(10): 2799-2805. |
[8] | 武小平, 张强, 赵芳, 焦琳. 基于BERT的心血管医疗指南实体关系抽取方法[J]. 计算机应用, 2021, 41(1): 145-149. |
[9] | 马冬雪, 宋设, 谢振平, 刘渊. 领域本体驱动的招投标网页解析方法[J]. 计算机应用, 2020, 40(6): 1574-1579. |
[10] | 陈曦, 梅广, 张金金, 许维胜. 融合知识图谱和协同过滤的学生成绩预测方法[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 595-601. |
[11] | 张钊, 吉建民, 陈小平. 用于知识表示学习的对抗式负样本生成[J]. 计算机应用, 2019, 39(9): 2489-2493. |
[12] | 鲁强, 刘兴昱. 基于迁移学习的知识图谱问答语义匹配模型[J]. 计算机应用, 2018, 38(7): 1846-1852. |
[13] | 王子涵, 邵明光, 刘国军, 郭茂祖, 毕建东, 刘扬. 基于实体相似度信息的知识图谱补全算法[J]. 计算机应用, 2018, 38(11): 3089-3093. |
[14] | 王秋月, 覃雄派, 曹巍, 覃飙. 扩展知识图谱上的实体关系检索[J]. 计算机应用, 2016, 36(4): 985-991. |
[15] | 鄂世嘉, 林培裕, 向阳. 自动化构建的中文知识图谱系统[J]. 计算机应用, 2016, 36(4): 992-996. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||