《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (8): 2415-2422.DOI: 10.11772/j.issn.1001-9081.2021060996
所属专题: 人工智能
收稿日期:
2021-06-11
修回日期:
2021-09-27
接受日期:
2021-10-15
发布日期:
2022-01-25
出版日期:
2022-08-10
通讯作者:
熊昆
作者简介:
代少升(1974—),男,河南潢川人,教授,博士,主要研究方向:图像处理、深度学习、红外成像;
Shaosheng DAI, Kun XIONG(), Yunduo WU, Jiawei XIAO
Received:
2021-06-11
Revised:
2021-09-27
Accepted:
2021-10-15
Online:
2022-01-25
Published:
2022-08-10
Contact:
Kun XIONG
About author:
DAI Shaosheng, born in 1974, Ph. D., professor. His research interests include image processing, deep learning, infrared imaging.摘要:
近年来,静态图像中人脸特征点检测算法得到了极大的改进,然而,由于真实视频中头部姿态、遮挡和光照等因素的变化,人脸特征点检测和跟踪仍然具有挑战性。为了解决这一问题,提出一种多视角约束级联回归的视频人脸特征点跟踪算法。首先,利用三维和二维稀疏点集建立变换关系,并估计初始形状;其次,由于人脸图像存在较大的姿态差异,使用仿射变换对人脸图像进行姿态矫正;在构造形状回归模型时,采用多视角约束级联回归模型减小形状方差,从而使学习到的回归模型对形状方差具有更强的鲁棒性;最后,采用重新初始化机制,并在特征点正确定位时使用归一化互相关(NCC)模板匹配跟踪算法建立连续帧之间的形状关系。在公共数据集上的实验结果表明:该算法的平均误差小于眼间距离的10%。
中图分类号:
代少升, 熊昆, 吴云铎, 肖佳伟. 多视角约束级联回归的视频人脸特征点跟踪[J]. 计算机应用, 2022, 42(8): 2415-2422.
Shaosheng DAI, Kun XIONG, Yunduo WU, Jiawei XIAO. Video facial landmark tracking by multi-view constrained cascade regression[J]. Journal of Computer Applications, 2022, 42(8): 2415-2422.
算法 | Lfpw | Helen | 300W | ||
---|---|---|---|---|---|
普通 | 挑战 | 全部 | |||
ESR | — | — | 5.28 | 17.00 | 7.58 |
SDM | 5.67 | 5.50 | 5.57 | 15.40 | 7.50 |
ERT | — | — | — | — | 6.40 |
LBF | — | — | 4.95 | 11.98 | 6.32 |
GN-DPM | 5.92 | 5.69 | 5.78 | — | — |
CFSS | — | — | 4.73 | 9.98 | 5.76 |
3DDFA | — | — | 6.15 | 10.59 | 7.01 |
MDM | — | — | 4.83 | 10.14 | 5.88 |
SeqMT | — | — | 4.84 | 9.93 | 5.74 |
PFLD | — | — | 3.38 | 6.83 | 4.02 |
LUVLi | — | — | 2.76 | 5.16 | 3.23 |
MCCR | 5.51 | 5.31 | 5.39 | 9.72 | 6.24 |
表1 本文算法与其他算法在平均误差上的比较
Tab. 1 Comparison of average error between the proposed algorithm and other algorithms
算法 | Lfpw | Helen | 300W | ||
---|---|---|---|---|---|
普通 | 挑战 | 全部 | |||
ESR | — | — | 5.28 | 17.00 | 7.58 |
SDM | 5.67 | 5.50 | 5.57 | 15.40 | 7.50 |
ERT | — | — | — | — | 6.40 |
LBF | — | — | 4.95 | 11.98 | 6.32 |
GN-DPM | 5.92 | 5.69 | 5.78 | — | — |
CFSS | — | — | 4.73 | 9.98 | 5.76 |
3DDFA | — | — | 6.15 | 10.59 | 7.01 |
MDM | — | — | 4.83 | 10.14 | 5.88 |
SeqMT | — | — | 4.84 | 9.93 | 5.74 |
PFLD | — | — | 3.38 | 6.83 | 4.02 |
LUVLi | — | — | 2.76 | 5.16 | 3.23 |
MCCR | 5.51 | 5.31 | 5.39 | 9.72 | 6.24 |
算法 | 处理器/显卡 | 模型大小/Mb | 处理时间/ms |
---|---|---|---|
SDM | i7-6700K | 10.1 | 16 |
LAB | TITAN X | 50.7 | 60 |
SAN | GTX 1080Ti | 270.5+528.0 | 343 |
MCCR | GTX 1080Ti | 7.6 | 21 |
表2 不同处理平台上模型大小和处理时间对比
Tab. 2 Comparison of model size and processing time on different processing platforms
算法 | 处理器/显卡 | 模型大小/Mb | 处理时间/ms |
---|---|---|---|
SDM | i7-6700K | 10.1 | 16 |
LAB | TITAN X | 50.7 | 60 |
SAN | GTX 1080Ti | 270.5+528.0 | 343 |
MCCR | GTX 1080Ti | 7.6 | 21 |
1 | LI C Y, BALTRUŠAITIS T, MORENCY L P. Constrained ensemble initialization for facial landmark tracking in video [C]// Proceedings of the 12th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2017: 697-704. 10.1109/fg.2017.88 |
2 | LIU S, ZHANG Y Q, YANG X S, et al. Robust facial landmark detection and tracking across poses and expressions for in-the-wild monocular video[J]. Computational Visual Media, 2017, 3(1): 33-47. 10.1007/s41095-016-0068-y |
3 | ASTHANA A, ZAFEIRIOU S, CHENG S Y, et al. Robust discriminative response map fitting with constrained local models [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3444-3451. 10.1109/cvpr.2013.442 |
4 | BALTRUŠAITIS T, ROBINSON P, MORENCY L P. Continuous conditional neural fields for structured regression [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 593-608. |
5 | RAJAMANOHARAN G, COOTES T F. Multi-view constrained local models for large head angle facial tracking [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Piscataway: IEEE, 2015: 971-978. 10.1109/iccvw.2015.128 |
6 | 桑高丽,王国滨,朱蓉,等.基于级联形状回归的多视角人脸特征点定位[J].浙江大学学报(工学版), 2019, 53(7): 1374-1379, 1388. |
SANG G L, WANG G B, ZHU R, et al. Multi-view face feature point localization based on cascade shape regression[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(7): 1374-1379, 1388. | |
7 | 赵慧,景丽萍,于剑.自适应监督下降方法的姿态鲁棒人脸对齐算法[J].计算机科学与探索, 2020, 14(4): 649-656. |
ZHAO H, JING L P, YU J. Pose robust face alignment algorithm for adaptive supervised descent method [J]. Journal Frontiers of Computer Science and Technology, 2020, 14(4): 649-656. | |
8 | URICÁR M, FRANC V, HLAVÁC V. Facial landmark tracking by tree-based deformable part model based detector [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Piscataway: IEEE, 2015: 963-970. 10.1109/iccvw.2015.127 |
9 | DONG X Y, YAN Y, OUYANG W L, et al. Style aggregated network for facial landmark detection [C]// Proceedings of the 2018 IEEE /CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 379-388. 10.1109/cvpr.2018.00047 |
10 | GUO X J, LI S Y, YU J K, et al. PFLD: a practical facial landmark detector[EB/OL]. (2019-03-03) [2021-03-21]. . |
11 | KUMAR A, MARKS T K, MOU W X, et al. LUVLi face alignment: estimating landmarks' location, uncertainty, and visibility likelihood [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8233-8243. 10.1109/cvpr42600.2020.00826 |
12 | ZHANG K P, ZHANG Z P, LI Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. 10.1109/lsp.2016.2603342 |
13 | XIONG X H, DE LA TORRE F. Supervised descent method and its applications to face alignment [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 532-539. 10.1109/cvpr.2013.75 |
14 | TZIMIROPOULOS G, PANTIC M. Gauss-Newton deformable part models for face alignment in-the-wild [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1851-1858. 10.1109/cvpr.2014.239 |
15 | KAZEMI V, SULLIVAN J. One millisecond face alignment with an ensemble of regression trees [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1867-1874. 10.1109/cvpr.2014.241 |
16 | CAO X D, WEI Y C, WEN F, et al. Face alignment by explicit shape regression[J]. International Journal of Computer Vision, 2014, 107(2): 177-190. 10.1007/s11263-013-0667-3 |
17 | REN S Q, CAO X D, WEI Y C, et al. Face alignment at 3000 FPS via regressing local binary features [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1685-1692. 10.1109/cvpr.2014.218 |
18 | ZHU S Z, LI C, LOY C C, et al. Face alignment by coarse-to-fine shape searching [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 4998-5006. 10.1109/cvpr.2015.7299134 |
19 | ZHU X Y, LEI Z, LIU X M, et al. Face alignment across large poses: a 3D solution [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 146-155. 10.1109/cvpr.2016.23 |
20 | TRIGEORGIS G, SNAPE P, NICOLAOU M A, et al. Mnemonic descent method: a recurrent process applied for end-to-end face alignment [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4177-4187. 10.1109/cvpr.2016.453 |
21 | HONARI S, MOLCHANOV P, TYREE S, et al. Improving landmark localization with semi-supervised learning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1546-1555. 10.1109/cvpr.2018.00167 |
22 | WU W Y, QIAN C, YANG S, et al. Look at boundary: a boundary-aware face alignment algorithm [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2129-2138. 10.1109/cvpr.2018.00227 |
[1] | 吴孟桦, 胡晓兵, 李航, 江代渝. 基于图像配准的零件轮廓修正方法[J]. 计算机应用, 2020, 40(4): 1144-1150. |
[2] | 陈平, 龚勋. 基于尺度自适应与增量式学习的人脸对齐方法[J]. 计算机应用, 2018, 38(7): 2064-2069. |
[3] | 杨伟, 谢维成, 蒋文波, 石林玉. 基于自相似性车载采集城市街景图像的重建[J]. 计算机应用, 2017, 37(3): 817-822. |
[4] | 邹玮刚 陈沛云 黄江燕. 基于三维亚仿射变换的数字图像置乱技术[J]. 计算机应用, 2012, 32(09): 2595-2598. |
[5] | 刘毅飞 张旭明 丁明跃. 归一化互相关灰度图像匹配的多核信号处理器实现[J]. 计算机应用, 2011, 31(12): 3334-3336. |
[6] | 汪炜 王伟 濮运辰. 基于NCCSS的快速多波段图像配准算法[J]. 计算机应用, 2011, 31(01): 167-169. |
[7] | 王振 魏志强. 交通标识牌字符提取算法[J]. 计算机应用, 2011, 31(01): 266-269. |
[8] | 唐斌兵 陈团强 王正明. 基于小波变换的图像配准方法[J]. 计算机应用, 2007, 27(9): 2103-2105. |
[9] | 温法慧 赵卫东 李吉超 王志成. 基于小波域图像不变矩的图纸一致性检测[J]. 计算机应用, 2007, 27(8): 2077-2080. |
[10] | 朱政 赵卫东 王志成 . 改进的基于凸壳仿射不变量的图像识别和配准算法[J]. 计算机应用, 2007, 27(10): 2559-2562. |
[11] | 王晓冬 霍宏 方涛 . 基于快速归一化互相关函数的运动车辆阴影检测算法[J]. 计算机应用, 2006, 26(9): 2065-2067. |
[12] | 邱丽梅 胡步发 . 基于仿射变换和线性回归的3D人脸姿态估计方法[J]. 计算机应用, 2006, 26(12): 2877-2879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||