《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (1): 94-108.DOI: 10.11772/j.issn.1001-9081.2021071290
收稿日期:
2021-07-19
修回日期:
2021-08-16
接受日期:
2021-08-23
发布日期:
2021-08-16
出版日期:
2022-01-10
通讯作者:
韩萌
作者简介:
单芝慧(1996—),女,河南周口人,硕士研究生,CCF会员,主要研究方向:模式挖掘基金资助:
Zhihui SHAN, Meng HAN(), Qiang HAN
Received:
2021-07-19
Revised:
2021-08-16
Accepted:
2021-08-23
Online:
2021-08-16
Published:
2022-01-10
Contact:
Meng HAN
About author:
SHAN Zhihui, born in 1996, M. S. candidate. Her research interests include pattern mining.Supported by:
摘要:
高效用模式挖掘(HUPM)考虑了项的购买数量及单位利润,提供了项更详细的信息,使用户能够做出更好的经济决策。针对大多数HUPM算法都应用在与不断产生数据的现实世界不符的静态数据集上的问题,近些年不断提出了动态数据上的HUPM算法。首先,对增量数据、数据流、动态删除和动态修改数据上的HUPM算法以及融合高效用模式(高效用序列模式、平均高效用模式、top-k高效用模式等)挖掘算法进行了总结;然后,对使用不同类型数据的算法进行了总结,包括动态利润数据、动态序列数据等数据类型;其次,从算法使用的数据结构、剪枝策略、窗口模型、优缺点等角度对HUPM算法进行分类总结;最后,针对目前研究的不足,提出了下一步动态数据上的HUPM算法研究方向。
中图分类号:
单芝慧, 韩萌, 韩强. 动态数据上的高效用模式挖掘综述[J]. 计算机应用, 2022, 42(1): 94-108.
Zhihui SHAN, Meng HAN, Qiang HAN. Survey of high utility pattern mining on dynamic data[J]. Journal of Computer Applications, 2022, 42(1): 94-108.
事务标识符 | 项 |
---|---|
T1 | a:1, c:1, d:1, e:1 |
T2 | a:1, b:4, c:1, e:1, f:2 |
T3 | a:1, b:4, d:1, f:2 |
T4 | a:4, b:7, e:1, f:3 |
T5 | b:3, c:1 |
T6 | b:3, d:1, f:2 |
T7 | a:3, b:2, d:1, f:2 |
表1 事务数据集
Tab. 1 Transaction dataset
事务标识符 | 项 |
---|---|
T1 | a:1, c:1, d:1, e:1 |
T2 | a:1, b:4, c:1, e:1, f:2 |
T3 | a:1, b:4, d:1, f:2 |
T4 | a:4, b:7, e:1, f:3 |
T5 | b:3, c:1 |
T6 | b:3, d:1, f:2 |
T7 | a:3, b:2, d:1, f:2 |
项 | 外部效用 |
---|---|
a | 4 |
b | 3 |
c | 7 |
d | 2 |
e | 5 |
f | 1 |
表4 序列数据集的外部效用
Tab. 4 External utility of sequence dataset
项 | 外部效用 |
---|---|
a | 4 |
b | 3 |
c | 7 |
d | 2 |
e | 5 |
f | 1 |
事务标识符 | 项 | 数量值 | 单位利润 |
---|---|---|---|
{1,2,1,1} | {2,1,5,1} | ||
{4,1,3,1,1} | {1,1.9,0.9,4.8,4} | ||
{4,2,1} | {1.1,1,1,5,5} | ||
{5,2,1,2} | {1.1,2.2,5.5,4.4} | ||
{3,4,1,2} | {1.2,2.4,1.2,3.6} |
表5 动态利润数据集
Tab. 5 Dynamic profit dataset
事务标识符 | 项 | 数量值 | 单位利润 |
---|---|---|---|
{1,2,1,1} | {2,1,5,1} | ||
{4,1,3,1,1} | {1,1.9,0.9,4.8,4} | ||
{4,2,1} | {1.1,1,1,5,5} | ||
{5,2,1,2} | {1.1,2.2,5.5,4.4} | ||
{3,4,1,2} | {1.2,2.4,1.2,3.6} |
算法 | 数据结构 | 窗口类型 | 剪枝策略 | 阶段数 | 优缺点 |
---|---|---|---|---|---|
HUI_W[ | None | 加权滑动窗口 | TWU | 1 | 衰减因子更新需要对项每个部分的 twu 重新计算,消耗时间较多;排除了低重要性模式,减少了候选模式数量 |
THUI-Mine[ | 列表结构 | 滑动窗口过滤 | TWU | 2 | 生成了较少的候选项集,减少了执行时间; 产生了大量错误的候选项集且消耗了大量内存 |
MHUI-BIT MHUI-TID[ | 位向量和 TIDlist、字典树 | 滑动窗口 | TWU | 2 | 有效减少了候选者的数量; 时间和存储效率方面性能低 |
MHUI-max[ | TIDlist, LexTree-maxHTU | 滑动窗口 | TWU | 2 | 产生了较少的候选项集;逐级生成候选模式在运行时间和存储效率方面性能较低 |
HUPMS[ | HUS-tree | 滑动窗口 | TWU | 2 | 减少了大量的候选项集,减少了内存消耗; 时间和内存消耗仍然较大 |
GUIDE[ | MUsw-Tree | 时间敏感滑动窗口 | TWU | 1 | 减少了大量冗余模式;内存消耗需进一步提升 |
HUM-UT[ | UT-Tree | 滑动窗口过滤 | TWU | 1 | 无需重新扫描数据集且无需生成候选项集; 搜索空间较大 |
T-HUDS[ | HUDS-tree | 滑动窗口 | TWU | 2 | 产生了较少的候选项集,有效的剪枝搜索空间; 时间耗费较大 |
HUIDE[ | HUI-tree | 时间滑动窗口 | TWU | 1 | 有效地存储了效用信息,减少了候选项集的数量; 检查延迟偏大,结果精度不是很高 |
SHU-Growth[ | SHU-Tree | 滑动窗口 | RGE,RLE | 1 | 有效减少了搜索空间,减少了运行时间; 内存和运行时间仍然很大 |
SHUPM[ | SHUP-List | 滑动窗口 | psum | 1 | 无需产生候选项集,减少了搜索空间; 运行时间可进一步提升 |
SOHUPDS[ | IUDataListSW | 滑动窗口 | lu | 1 | 时间和内存消耗较少;性能可进一步提升 |
表6 基于滑动窗口的高效用模式算法
Tab. 6 Sliding window-based high utility pattern algorithms
算法 | 数据结构 | 窗口类型 | 剪枝策略 | 阶段数 | 优缺点 |
---|---|---|---|---|---|
HUI_W[ | None | 加权滑动窗口 | TWU | 1 | 衰减因子更新需要对项每个部分的 twu 重新计算,消耗时间较多;排除了低重要性模式,减少了候选模式数量 |
THUI-Mine[ | 列表结构 | 滑动窗口过滤 | TWU | 2 | 生成了较少的候选项集,减少了执行时间; 产生了大量错误的候选项集且消耗了大量内存 |
MHUI-BIT MHUI-TID[ | 位向量和 TIDlist、字典树 | 滑动窗口 | TWU | 2 | 有效减少了候选者的数量; 时间和存储效率方面性能低 |
MHUI-max[ | TIDlist, LexTree-maxHTU | 滑动窗口 | TWU | 2 | 产生了较少的候选项集;逐级生成候选模式在运行时间和存储效率方面性能较低 |
HUPMS[ | HUS-tree | 滑动窗口 | TWU | 2 | 减少了大量的候选项集,减少了内存消耗; 时间和内存消耗仍然较大 |
GUIDE[ | MUsw-Tree | 时间敏感滑动窗口 | TWU | 1 | 减少了大量冗余模式;内存消耗需进一步提升 |
HUM-UT[ | UT-Tree | 滑动窗口过滤 | TWU | 1 | 无需重新扫描数据集且无需生成候选项集; 搜索空间较大 |
T-HUDS[ | HUDS-tree | 滑动窗口 | TWU | 2 | 产生了较少的候选项集,有效的剪枝搜索空间; 时间耗费较大 |
HUIDE[ | HUI-tree | 时间滑动窗口 | TWU | 1 | 有效地存储了效用信息,减少了候选项集的数量; 检查延迟偏大,结果精度不是很高 |
SHU-Growth[ | SHU-Tree | 滑动窗口 | RGE,RLE | 1 | 有效减少了搜索空间,减少了运行时间; 内存和运行时间仍然很大 |
SHUPM[ | SHUP-List | 滑动窗口 | psum | 1 | 无需产生候选项集,减少了搜索空间; 运行时间可进一步提升 |
SOHUPDS[ | IUDataListSW | 滑动窗口 | lu | 1 | 时间和内存消耗较少;性能可进一步提升 |
算法 | 数据结构 | 窗口类型 | 剪枝策略 | 阶段数 | 模式类别 | 优缺点 |
---|---|---|---|---|---|---|
TOPK-SW[ | HUI-Tree | 滑动窗口 | TWU | 1 | top-k高效用模式 | 无需重新扫描数据集,无需生成候选项集; 在稀疏数据集上性能不够好 |
MAHUSP[ | MAS-Tree | 滑动窗口 | RSU | 1 | 高效用序列模式 | 有效解决了内存自适应问题; 牺牲了HUSP的质量 |
SHAU[ | SHAU-Tree | 滑动窗口 | RUG | 1 | 高平均效用模式 | 有效减小了搜索空间; 内存和运行时间仍然较大 |
Vert_top-k_DS[ | iList | 滑动窗口 | TWU | 1 | top-k高效用模式 | 减少了搜索空间,时间和内存性能得到了提升;数据集大小依旧较大,可通过事务合并技术进一步减少 |
HUSP-Stream[ | HUSP-Tree和ItemUtilLists | 滑动窗口 | TSW,SFU | 1 | 高效用序列模式 | 有效存储了效用信息,剪枝策略进一步减小了搜索空间;运行时间可进一步提升 |
HUSP-UT[ | UT-tree | 滑动窗口 | swu | 1 | 高效用序列模式 | 不产生候选项集,减少了内存的消耗 |
CHUI_DS[ | CH-List | 滑动窗口 | SunEU+SumRu | 1 | 闭合的高效用模式 | 第一个数据流上的闭合高效用模式挖掘算法,能够快速准确构建和更新信息 |
MPM[ | DAT TUL | 衰减窗口 | dub | 2 | 高平均效用模式 | 减少了内存消耗与运行时间 |
MAHUSP[ | MAS-Tree | 界标窗口 | Ru | 1 | 高效用序列模式 | 可以处理内存不足以向树结构添加潜在高效用序列项集的情况;执行时间与内存消耗大 |
GUIDE[ | MUITF-Tree | 衰减窗口 界标窗口 | TWU | 1 | 最大高效用模式 | 减少了冗余项集的产生; 运行时间和内存消耗过大 |
GENHUI[ | RHUI-Tree | 衰减窗口 | DTWU | 1 | 最近高效用模式 | 减小了搜索空间,挖掘了最近的高效用模式; 产生了大量候选项集,需要大量内存 |
ILDHUP[ | DUI-list | 衰减窗口 | dup | 1 | 最近高效用模式 | 能够快速搜索效用信息,数据结构存储高效; 内存性能可进一步提升 |
MGUIDELM[ | MMUI-Tree | 界标窗口 | TWU | 1 | 最大高效用模式 | 产生了较少的候选项集;内存消耗较大 |
表7 基于窗口模式的HUPM算法
Tab. 7 HUPM algorithms based on window pattern
算法 | 数据结构 | 窗口类型 | 剪枝策略 | 阶段数 | 模式类别 | 优缺点 |
---|---|---|---|---|---|---|
TOPK-SW[ | HUI-Tree | 滑动窗口 | TWU | 1 | top-k高效用模式 | 无需重新扫描数据集,无需生成候选项集; 在稀疏数据集上性能不够好 |
MAHUSP[ | MAS-Tree | 滑动窗口 | RSU | 1 | 高效用序列模式 | 有效解决了内存自适应问题; 牺牲了HUSP的质量 |
SHAU[ | SHAU-Tree | 滑动窗口 | RUG | 1 | 高平均效用模式 | 有效减小了搜索空间; 内存和运行时间仍然较大 |
Vert_top-k_DS[ | iList | 滑动窗口 | TWU | 1 | top-k高效用模式 | 减少了搜索空间,时间和内存性能得到了提升;数据集大小依旧较大,可通过事务合并技术进一步减少 |
HUSP-Stream[ | HUSP-Tree和ItemUtilLists | 滑动窗口 | TSW,SFU | 1 | 高效用序列模式 | 有效存储了效用信息,剪枝策略进一步减小了搜索空间;运行时间可进一步提升 |
HUSP-UT[ | UT-tree | 滑动窗口 | swu | 1 | 高效用序列模式 | 不产生候选项集,减少了内存的消耗 |
CHUI_DS[ | CH-List | 滑动窗口 | SunEU+SumRu | 1 | 闭合的高效用模式 | 第一个数据流上的闭合高效用模式挖掘算法,能够快速准确构建和更新信息 |
MPM[ | DAT TUL | 衰减窗口 | dub | 2 | 高平均效用模式 | 减少了内存消耗与运行时间 |
MAHUSP[ | MAS-Tree | 界标窗口 | Ru | 1 | 高效用序列模式 | 可以处理内存不足以向树结构添加潜在高效用序列项集的情况;执行时间与内存消耗大 |
GUIDE[ | MUITF-Tree | 衰减窗口 界标窗口 | TWU | 1 | 最大高效用模式 | 减少了冗余项集的产生; 运行时间和内存消耗过大 |
GENHUI[ | RHUI-Tree | 衰减窗口 | DTWU | 1 | 最近高效用模式 | 减小了搜索空间,挖掘了最近的高效用模式; 产生了大量候选项集,需要大量内存 |
ILDHUP[ | DUI-list | 衰减窗口 | dup | 1 | 最近高效用模式 | 能够快速搜索效用信息,数据结构存储高效; 内存性能可进一步提升 |
MGUIDELM[ | MMUI-Tree | 界标窗口 | TWU | 1 | 最大高效用模式 | 产生了较少的候选项集;内存消耗较大 |
1 | AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules in large databases[C]// Proceedings of the 1994 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers Inc., 1994: 487-499. |
2 | LIU Y, LIAO W K, CHOUDHARY A. A two-phase algorithm for fast discovery of high utility itemsets[C]// Proceedings of the 2005 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS3518. Berlin: Springer, 2005: 689-695. |
3 | LIN C W, HONG T P, LU W H. Efficiently mining high average utility itemsets with a tree structure[C]// Proceedings of the 2010 Asian Conference on Intelligent Information and Database Systems, LNCS5990. Berlin: Springer, 2010: 131-139. |
4 | LAN G C, HONG T P, TSENG V S. A projection-based approach for discovering high average-utility itemsets[J]. Journal of Information Science and Engineering, 2012, 28(1): 193-209. |
5 | YIN J F, ZHENG Z G, CAO L B. USpan: an efficient algorithm for mining high utility sequential patterns[C]// Proceedings of the 2012 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 660-668. 10.1145/2339530.2339636 |
6 | WU C W, SHIE B E, TSENG V S, et al. Mining top-k high utility itemsets[C]// Proceedings of the 2012 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 78-86. 10.1145/2339530.2339546 |
7 | SHIE B E, HSIAO H F, TSENG V S, et al. Mining high utility mobile sequential patterns in mobile commerce environments[C]// Proceedings of the 2011 International Conference on Database Systems for Advanced Applications, LNCS6587. Berlin: Springer, 2011: 224-238. |
8 | AHMED C F, TANBEER S K, JEONG B S. A framework for mining high utility Web access sequences[J]. IETE Technical Review, 2011, 28(1): 3-16. 10.4103/0256-4602.74506 |
9 | ZIHAYAT M, DAVOUDI H, AN A. Mining significant high utility gene regulation sequential patterns[J]. BMC Systems Biology, 2017, 11(S6): No.109. 10.1186/s12918-017-0475-4 |
10 | GAN W S, LIN J C W, FOURNIER-VIGER P, et al. Extracting non-redundant correlated purchase behaviors by utility measure[J]. Knowledge-Based Systems, 2018, 143: 30-41. 10.1016/j.knosys.2017.12.003 |
11 | LIN C W, HONG T P, LAN G C, et al. Incrementally mining high utility itemsets in dynamic databases[C]// Proceedings of the 2010 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2010: 303-307. 10.1109/grc.2010.151 |
12 | WU J M-T, TENG Q, LIN J C-W, et al. Maintenance of prelarge high average-utility patterns in incremental databases[C]// Proceedings ot the 2020 International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, LNCS12144. Cham: Springer, 2020: 884-895. |
13 | SONG W, LIU Y, LI J H. Mining high utility itemsets by dynamically pruning the tree structure[J]. Applied Intelligence, 2014, 40(1): 29-43. 10.1007/s10489-013-0443-7 |
14 | ZHENG H T, LI Z. iCHUM: an efficient algorithm for high utility mining in incremental databases[C]// Proceedings of the 2015 International Conference on Knowledge Science, Engineering and Management, LNCS9403. Cham: Springer, 2015: 212-223. |
15 | LIN J C W, GAN W S, HONG T P, et al. Incrementally updating high-utility itemsets with transaction insertion[C]// Proceedings of the 2014 International Conference on Advanced Data Mining and Applications, LNCS8933. Cham: Springer, 2014: 44-56. |
16 | TSAI P S M. Mining high utility itemsets in data streams based on the weighted sliding window model[J]. International Journal of Data Mining and Knowledge Management Process, 2014, 4(2): 13-28. 10.5121/ijdkp.2014.4202 |
17 | YUN U, KIM D, YOON E, et al. Damped window based high average utility pattern mining over data streams[J]. Knowledge-Based Systems, 2018, 144: 188-205. 10.1016/j.knosys.2017.12.029 |
18 | ZIHAYAT M, CHEN Y, AN A. Memory-adaptive high utility sequential pattern mining over data streams[J]. Machine Learning, 2017, 106(6): 799-836. 10.1007/s10994-016-5617-1 |
19 | GAN W S, LIN J C W, FOURNIER-VIGER P, et al. A survey of incremental high-utility itemset mining[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(2): No.e1242. 10.1002/widm.1242 |
20 | SUVARNA U, SRINIVAS Y. Efficient high-utility itemset mining over variety of databases: a survey[M]// NAYAK J, ABRAHAM A, KRISHNA B M, et al. Soft Computing in Data Analytics: Proceedings of the 2019 International Conference on SCDA2018, AISC 758. Singapore: Springer, 2019: 803-816. 10.1007/978-981-13-0514-6_76 |
21 | FOURNIER-VIGER P, LIN J C-W, TRUONG-CHI T, et al. A survey of high utility itemset mining[M]// High-Utility Pattern Mining. Cham: Springer, 2019: 1-45. 10.1007/978-3-030-04921-8_1 |
22 | 王少峰,韩萌,贾涛,等. 数据流高效用模式挖掘综述[J]. 计算机应用研究, 2020, 37(9):2571-2578. 10.19734/j.issn.1001-3695.2019.03.0105 |
WANG S F, HAN M, JIA T, et al, Survey of high utility pattern mining over data streams[J]. Application Research of Computers, 2020, 37(9):2571-2578. 10.19734/j.issn.1001-3695.2019.03.0105 | |
23 | LIU M, QU J. Mining high utility itemsets without candidate generation[C]// Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 55-64. 10.1145/2396761.2396773 |
24 | NGUYEN L T T, NGUYEN P, NGUYEN T D D, et al. Mining high-utility itemsets in dynamic profit databases[J]. Knowledge-Based Systems, 2019, 175: 130-144. 10.1016/j.knosys.2019.03.022 |
25 | AHMED C F, TANBEER S K, JEONG B S, et al. Mining high utility patterns in incremental databases[C]// Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication. New York: ACM, 2009: 656-663. 10.1145/1516241.1516357 |
26 | AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12): 1708-1721. 10.1109/tkde.2009.46 |
27 | YUN U, RYANG H. Incremental high utility pattern mining with static and dynamic databases[J]. Applied Intelligence, 2015, 42(2): 323-352. 10.1007/s10489-014-0601-6 |
28 | KIM D, YUN U. Efficient algorithm for mining high average-utility itemsets in incremental transaction databases[J]. Applied Intelligence, 2017, 47(1): 114-131. 10.1007/s10489-016-0890-z |
29 | RADKAR A N, PAWAR S. S. Mining high on-shelf utility itemsets with negative values from dynamic updated database[EB/OL]. (2015-07-07) [2021-03-20].. |
30 | AHMED C F, TANBEER S K, JEONG B S. Mining high utility Web access sequences in dynamic Web log data[C]// Proceedings of the 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Piscataway: IEEE, 2010: 76-81. 10.1109/snpd.2010.21 |
31 | WANG J Z, HUANG J L. Incremental mining of high utility sequential patterns in incremental databases[C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM, 2016: 2341-2346. 10.1145/2983323.2983691 |
32 | WANG J Z, HUANG J L. On incremental high utility sequential pattern mining[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(5): No.55. 10.1145/3178114 |
33 | YUN U, RYANG H, LEE G, et al. An efficient algorithm for mining high utility patterns from incremental databases with one database scan[J]. Knowledge-Based Systems, 2017, 124: 188-206. 10.1016/j.knosys.2017.03.016 |
34 | KIM J, YUN U, YOON E, et al. One scan based high average-utility pattern mining in static and dynamic databases[J]. Future Generation Computer Systems, 2020, 111: 143-158. 10.1016/j.future.2020.04.027 |
35 | YUN U, NAM H, LEE G, et al. Efficient approach for incremental high utility pattern mining with indexed list structure[J]. Future Generation Computer Systems, 2019, 95: 221-239. 10.1016/j.future.2018.12.029 |
36 | DAM T L, RAMAMPIARO H, NØRVÅG K, et al. Towards efficiently mining closed high utility itemsets from incremental databases[J]. Knowledge-Based Systems, 2019, 165: 13-29. 10.1016/j.knosys.2018.11.019 |
37 | 吴倩,王林平,罗相洲,等. 动态数据库中增量Top-k高效用模式挖掘算法[J]. 计算机应用研究, 2017, 34(5):1401-1405. 10.3969/j.issn.1001-3695.2017.05.028 |
WU Q, WANG L P, LUO X Z, et al. Incremental Top-k high utility pattern mining algorithm in dynamic database[J]. Application Research of Computers, 2017, 34(5):1401-1405. 10.3969/j.issn.1001-3695.2017.05.028 | |
38 | LIN J C W, PIROUZ M, DJENOURI Y, et al. Incrementally updating the high average-utility patterns with pre-large concept[J]. Applied Intelligence, 2020, 50(11): 3788-3807. 10.1007/s10489-020-01743-y |
39 | 张春砚,韩萌,孙蕊,等. 基于紧凑效用列表的增量高效用模式挖掘方法[J]. 山东大学学报(工学版), 2021, 51(2): 122-128. |
ZHANG C Y, HAN M, SUN R, et al. Incremental high utility pattern mining method based on compact utility list[J]. Journal of Shandong University (Engineering Science), 2021,51(2):122-128. | |
40 | NGUYEN L T T, VU D B, NGUYEN T D D, et al. Mining maximal high utility itemsets on dynamic profit databases[J]. Cybernetics and Systems, 2020, 51(2): 140-160. 10.1080/01969722.2019.1705549 |
41 | ISHITA S Z, AHMED C F, LEUNG C K, et al. Mining regular high utility sequential patterns in static and dynamic databases[C]// Proceedings of the 2019 International Conference on Ubiquitous Information Management and Communication, AISC935. Cham: Springer, 2019: 897-916. 10.1007/s10489-021-02536-7 |
42 | HONG T P, LEE C H, WANG S L. An incremental mining algorithm for high average-utility itemsets[C]// Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks. Piscataway: IEEE, 2009: 421-425. 10.1109/i-span.2009.24 |
43 | LIN C W, HONG T P, LAN G C, et al. Incrementally mining high utility itemsets in dynamic databases[C]// Proceedings of the 2010 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2010: 303-307. 10.1109/grc.2010.151 |
44 | LIN C W, LAN G C, HONG T P. An incremental mining algorithm for high utility itemsets[J]. Expert Systems with Applications, 2012, 39(8): 7173-7180. 10.1016/j.eswa.2012.01.072 |
45 | LIN C W, GAN W S, HONG T P, et al. Maintaining high-utility itemsets in dynamic databases[C]// Proceedings of the 2014 International Conference on Machine Learning and Cybernetics. Piscataway: IEEE, 2014: 469-474. 10.1109/icmlc.2014.7009653 |
46 | LEE J, YUN U, LEE G, et al. Efficient incremental high utility pattern mining based on pre-large concept[J]. Engineering Applications of Artificial Intelligence, 2018, 72: 111-123. 10.1016/j.engappai.2018.03.020 |
47 | MORIMOTO Y. Mining frequent neighboring class sets in spatial databases[C]// Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2001: 353-358. 10.1145/502512.502564 |
48 | WANG X X, WANG L Z, LU J L, et al. Effectively updating high utility co-location patterns in evolving spatial databases[C]// Proceedings of the 2016 International Conference on Web-Age Information Management, LNCS9658. Cham: Springer, 2016: 67-81. |
49 | WANG X X, WANG L Z. Incremental mining of high utility co-locations from spatial database[C]// Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing. Piscataway: IEEE, 2017: 215-222. 10.1109/bigcomp.2017.7881702 |
50 | 韩萌,丁剑. 数据流频繁模式挖掘综述[J]. 计算机应用, 2019, 39(3):719-727. 10.11772/j.issn.1001-9081.2018081712 |
HAN M, DING J. Survey of frequent pattern mining over data streams[J]. Journal of Computer Applications, 2019, 39(3):719-727. 10.11772/j.issn.1001-9081.2018081712 | |
51 | CHU C J, TSENG V S, LIANG T. An efficient algorithm for mining temporal high utility itemsets from data streams[J]. Journal of Systems and Software, 2008, 81(7): 1105-1117. 10.1016/j.jss.2007.07.026 |
52 | LI H F, HUANG H Y, CHEN Y C, et al. Fast and memory efficient mining of high utility itemsets in data streams[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 881-886. 10.1109/icdm.2008.107 |
53 | LI H F, HUANG H Y, LEE S Y. Fast and memory efficient mining of high-utility itemsets from data streams: with and without negative item profits[J]. Knowledge and Information Systems, 2011, 28(3): 495-522. 10.1007/s10115-010-0330-z |
54 | LI H F. MHUI-max: an efficient algorithm for discovering high-utility itemsets from data streams[J]. Journal of Information Science, 2011, 37(5): 532-545. 10.1177/0165551511416436 |
55 | AHMED C F, TANBEER S K, JEONG B S, et al. Interactive mining of high utility patterns over data streams[J]. Expert Systems with Applications, 2012, 39(15): 11979-11991. 10.1016/j.eswa.2012.03.062 |
56 | SHIE B E, YU P S, TSENG V S. Efficient algorithms for mining maximal high utility itemsets from data streams with different models[J]. Expert Systems with Applications, 2012, 39(17): 12947-12960. 10.1016/j.eswa.2012.05.035 |
57 | FENG L, WANG L, JIN B. UT-Tree: efficient mining of high utility itemsets from data streams[J]. Intelligent Data Analysis, 2013, 17(4): 585-602. 10.3233/ida-130595 |
58 | ZIHAYAT M, AN A. Mining top-k high utility patterns over data streams[J]. Information Sciences, 2014, 285: 138-161. 10.1016/j.ins.2014.01.045 |
59 | 慕欢欢,柴玉梅,王黎明. 面向数据流的一个高效用项集挖掘算法[J]. 计算机应用与软件, 2015, 32(4):283-287, 313. 10.3969/j.issn.1000-386x.2015.04.066 |
MU H H, CHAI Y M, WANF L M. An algorithm of high utility itemset mining for data stream[J]. Computer Applications and Software, 2015, 32(4): 283-287, 313. 10.3969/j.issn.1000-386x.2015.04.066 | |
60 | RYANG H, YUN U. High utility pattern mining over data streams with sliding window technique[J]. Expert Systems with Applications, 2016, 57: 214-231. 10.1016/j.eswa.2016.03.001 |
61 | YUN U, LEE G, YOON E. Efficient high utility pattern mining for establishing manufacturing plans with sliding window control[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7239-7249. 10.1109/tie.2017.2682782 |
62 | 谢志轩,李玉强. 一种改进的流数据上的高效用模式挖掘算法[J]. 小型微型计算机系统, 2017, 38(9):2080-2085. 10.3969/j.issn.1000-1220.2017.09.030 |
XIE Z X, LI Y Q. Improved algorithm on high utility pattern mining over data stream[J]. Journal of Chinese Computer Systems, 2017, 38(9):2080-2085. 10.3969/j.issn.1000-1220.2017.09.030 | |
63 | JAYSAWAL B P, HUNAG J W. SOHUPDS: a single-pass one-phase algorithm for mining high utility patterns over a data stream[C]// Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York: ACM, 2020: 490-497. 10.1145/3341105.3373928 |
64 | MANIKE C, OM H. Time-fading based high utility pattern mining from uncertain data streams[M]// KUMAR KUNDU M, MOHAPATRA D P, KONAR A, et al. Advanced Computing, Networking and Informatics — Volume 1: Advanced Computing and Informatics Proceedings of the Second International Conference on Advanced Computing, Networking and Informatics ,SIST 27. Cham: Springer, 2014: 529-536. |
65 | KIM D, YUN U. Mining high utility itemsets based on the time decaying model[J]. Intelligent Data Analysis, 2016, 20(5): 1157-1180. 10.3233/ida-160861 |
66 | NAM H, YUN U, VO B, et al. Efficient approach for damped window-based high utility pattern mining with list structure[J]. IEEE Access, 2020, 8: 50958-50968. 10.1109/access.2020.2979289 |
67 | YUN U, KIM D, RYANG H, et al. Mining recent high average utility patterns based on sliding window from stream data[J]. Journal of Intelligent and Fuzzy Systems, 2016, 30(6): 3605-3617. 10.3233/ifs-162106 |
68 | LU T J, LIU Y, WANG L. An algorithm of top-k high utility itemsets mining over data stream[J]. Journal of Software, 2014, 9(9): 2342-2347. 10.4304/jsw.9.9.2342-2347 |
69 | DAWAR S, SHARMA V, GOYAL V. Mining top-k high-utility itemsets from a data stream under sliding window model[J]. Applied Intelligence, 2017, 47(4): 1240-1255. 10.1007/s10489-017-0939-7 |
70 | ZIHAYAT M, WU C W, AN A, et al. Mining high utility sequential patterns from evolving data streams[C]// Proceedings of the 2015 ASE BigData and SocialInformatics. New York: ACM, 2015: No.52. |
71 | HACKMAN A, HUANG Y, YU P S, et al. Mining emerging high utility itemsets over streaming database[C]// Proceedings of the 2019 International Conference on Advanced Data Mining and Applications, LNCS11888. Cham: Springer, 2019: 3-16. |
72 | TANG H J, LIU Y G, WANG L. A new algorithm of mining high utility sequential pattern in streaming data[J]. International Journal of Computational Intelligence Systems, 2019, 12(1): 342-350. 10.2991/ijcis.2019.125905650 |
73 | 程浩东,韩萌,张妮,等. 基于滑动窗口模型的数据流闭合高效用项集挖掘[J]. 计算机研究与发展, 2021, 58(11): 2500-2514. 10.7544/issn1000-1239.2021.20200554 |
CHENG H D, HAN M, ZHANG N, et al. Closed high utility itemsets mining over data stream based on sliding window model[J]. Journal of Computer Research and Development, 2021, 58(11): 2500-2514. 10.7544/issn1000-1239.2021.20200554 | |
74 | MANIKE C, OM H. Modified GUIDE (LM) algorithm for mining maximal high utility patterns from data streams[J]. International Journal of Computational Intelligence Systems, 2015, 8(3): 517-529. 10.1080/18756891.2015.1023589 |
75 | LIN C W, LAN G C, HONG T P. Mining high utility itemsets for transaction deletion in a dynamic database[J]. Intelligent Data Analysis, 2015, 19(1): 43-55. 10.3233/ida-140695 |
76 | LIN C W, HONG T P, LAN G C, et al. Efficient updating of discovered high-utility itemsets for transaction deletion in dynamic databases[J]. Advanced Engineering Informatics, 2015, 29(1): 16-27. 10.1016/j.aei.2014.08.003 |
77 | LIN J C W, GAN W S, HONG T P. A fast maintenance algorithm of the discovered high-utility itemsets with transaction deletion[J]. Intelligent Data Analysis, 2016, 20(4): 891-913. 10.3233/ida-160837 |
78 | LIN J C W, SHAO Y N, FOURNIER-VIGER P, et al. Maintenance algorithm for high average-utility itemsets with transaction deletion[J]. Applied Intelligence, 2018, 48(10): 3691-3706. 10.1007/s10489-018-1180-8 |
79 | YUN U, NAM H, KIM J, et al. Efficient transaction deleting approach of pre-large based high utility pattern mining in dynamic databases[J]. Future Generation Computer Systems, 2020, 103: 58-78. 10.1016/j.future.2019.09.024 |
80 | LIN J C W, GAN W S, HONG T P. A fast algorithm to maintain the discovered high-utility itemsets with modified records[C]// Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2015: 2573-2578. 10.1109/smc.2015.450 |
81 | LIN J C W, GAN W S, HONG T P. A fast updated algorithm to maintain the discovered high-utility itemsets for transaction modification[J]. Advanced Engineering Informatics, 2015, 29(3): 562-574. 10.1016/j.aei.2015.05.003 |
82 | LIN C W, ZHANG B B, GAN W S, et al. Updating high-utility pattern trees with transaction modification[J]. Multimedia Tools and Applications, 2016, 75(9): 4887-4912. 10.1007/s11042-014-2178-9 |
83 | LIN J C W, GAN W S, HONG T P. Maintaining the discovered high-utility itemsets with transaction modification[J]. Applied Intelligence, 2016, 44(1): 166-178. 10.1007/s10489-015-0697-3 |
84 | CHEN C M, CHEN L L, GAN W S, et al. Discovering high utility-occupancy patterns from uncertain data[J]. Information Sciences, 2021, 546: 1208-1229. 10.1016/j.ins.2020.10.001 |
85 | LI C H, WU C W, HUANG J T, et al. An efficient algorithm for mining high utility quantitative itemsets[C]// Proceedings of the 2019 International Conference on Data Mining Workshops. Piscataway: IEEE, 2019: 1005-1012. 10.1109/icdmw.2019.00145 |
86 | LI C H, WU C W, TSENG V S. Efficient vertical mining of high utility quantitative itemsets[C]// Proceedings of the 2014 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2014: 155-160. 10.1109/grc.2014.6982826 |
87 | WU J M T, SRIVASTAVA G, LIN J C W, et al. Mining of high-utility patterns in big IoT-based databases[J]. Mobile Networks and Applications, 2021, 26(1): 216-233. 10.1007/s11036-020-01701-5 |
[1] | 李小娟, 韩萌, 王乐, 张妮, 程浩东. 基于准确率爬坡的动态加权集成分类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 123-131. |
[2] | 尹春勇, 张帼杰. 面向分布式漂移数据流的集成分类模型[J]. 计算机应用, 2021, 41(7): 1947-1955. |
[3] | 郭帅, 苏旸. 基于数据流的加密流量分类方法[J]. 计算机应用, 2021, 41(5): 1386-1391. |
[4] | 李秀艳, 刘明曦, 史闻博, 董国芳. 面向资源受限用户的高效动态数据审计方案[J]. 计算机应用, 2021, 41(2): 422-432. |
[5] | 樊仲欣. 基于数据流的聚类趋势分析算法[J]. 计算机应用, 2020, 40(8): 2248-2254. |
[6] | 苏振宇, 宋桂香, 刘雁鸣, 赵媛. 服务器管理控制系统威胁建模与应用[J]. 计算机应用, 2019, 39(7): 1991-1996. |
[7] | 龚鸣清, 叶煌, 张鉴, 卢兴敬, 陈伟. 基于ARMv8架构的面向机器翻译的单精度浮点通用矩阵乘法优化[J]. 计算机应用, 2019, 39(6): 1557-1562. |
[8] | 孙小涓, 石涛, 胡玉新, 佟继周, 李冰, 宋峣. 基于流式计算的空间科学卫星数据实时处理[J]. 计算机应用, 2019, 39(6): 1563-1568. |
[9] | 张译天, 于炯, 鲁亮, 李梓杨. 大数据流式计算框架Heron环境下的流分类任务调度策略[J]. 计算机应用, 2019, 39(4): 1106-1116. |
[10] | 韩萌, 丁剑. 数据流频繁模式挖掘综述[J]. 计算机应用, 2019, 39(3): 719-727. |
[11] | 李梓杨, 于炯, 卞琛, 鲁亮, 蒲勇霖. 基于流网络的流式计算动态任务调度策略[J]. 计算机应用, 2018, 38(9): 2560-2567. |
[12] | 肖成龙, 林军, 王珊珊, 王宁. 面向高层次综合的自定义指令自动识别方法[J]. 计算机应用, 2018, 38(7): 2024-2031. |
[13] | 袁泉, 郭江帆. 新型含噪数据流集成分类的算法[J]. 计算机应用, 2018, 38(6): 1591-1595. |
[14] | 程玉胜, 陈飞, 王一宾. 基于粗糙集的数据流多标记分布特征选择[J]. 计算机应用, 2018, 38(11): 3105-3111. |
[15] | 王帅, 杨秋辉, 曾嘉彦, 万莹, 樊哲宁, 张光兰. 加权增量关联规则挖掘在通信告警预测中的应用[J]. 计算机应用, 2018, 38(10): 2875-2880. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||