《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (9): 2943-2951.DOI: 10.11772/j.issn.1001-9081.2021071303
收稿日期:
2021-07-19
修回日期:
2021-09-08
接受日期:
2021-09-14
发布日期:
2022-09-19
出版日期:
2022-09-10
通讯作者:
李璐瑶
作者简介:
赵川(1988—),男,北京人,副教授,博士,主要研究方向:供应链管理、自抗扰控制、自适应控制;基金资助:
Chuan ZHAO, Luyao LI(), Haoxiong YANG, Min ZUO
Received:
2021-07-19
Revised:
2021-09-08
Accepted:
2021-09-14
Online:
2022-09-19
Published:
2022-09-10
Contact:
Luyao LI
About author:
ZHAO Chuan, born in 1988, Ph. D., associate professor. His research interests include supply chain management, active disturbance rejection control, adaptive control.Supported by:
摘要:
针对随机扰动造成的企业库存系统缺货、库存水平增加和订货波动增大的问题,提出一种基于自抗扰控制(ADRC)的随机扰动库存系统优化模型。首先,根据进销存产品流和信息流的运营管理逻辑,通过拉普拉斯变换得到了库存系统的传递函数并将其转换成一类二阶状态空间标准式;然后,设计了一种包括跟踪微分器、扩张状态观测器和非线性状态误差反馈控制率的基于ADRC的随机扰动库存系统优化模型,从而在保证系统稳定的前提下,控制补偿随机扰动对库存系统的影响;最后,利用行业数据进行仿真实验,以验证ADRC优化模型对随机扰动库存系统优化的有效性。仿真实验结果表明,与无ADRC的库存反馈控制模型相比,基于ADRC的随机扰动库存系统优化模型可减少40%的库存剩余,减小47.4%的订货量均值,降低39.3%的订货量波动,并极大地改善随机扰动下企业库存系统的缺货现象。由此可见,基于ADRC的随机扰动库存系统优化模型能够指导企业合理订货,降低企业库存水平,从动态的角度提高库存系统的稳定性,为企业的实际生产运营提供科学的理论借鉴和应对方法。
中图分类号:
赵川, 李璐瑶, 杨浩雄, 左敏. 基于自抗扰控制的随机扰动库存系统优化模型[J]. 计算机应用, 2022, 42(9): 2943-2951.
Chuan ZHAO, Luyao LI, Haoxiong YANG, Min ZUO. Optimization model of inventory system under stochastic disturbance based on active disturbance rejection control[J]. Journal of Computer Applications, 2022, 42(9): 2943-2951.
参数 | 释义 | 参数 | 释义 |
---|---|---|---|
进货周期 | 系统输出 | ||
复频域算子 | |||
需求预测平滑指数 | |||
传递函数 | |||
外部扰动 | |||
状态空间变量 | 系统不确定内部动态,n=1, 2 |
表1 参数设置
Tab. 1 Setting of parameters
参数 | 释义 | 参数 | 释义 |
---|---|---|---|
进货周期 | 系统输出 | ||
复频域算子 | |||
需求预测平滑指数 | |||
传递函数 | |||
外部扰动 | |||
状态空间变量 | 系统不确定内部动态,n=1, 2 |
图4 基于自抗扰控制的随机扰动库存系统优化模型初始状态下跟踪曲线
Fig. 4 Tracking curve of optimization model of inventory system under stochastic disturbance based on ADRC in initial state
图5 基于自抗扰控制的随机扰动库存系统优化模型初始状态下阶跃响应
Fig. 5 Step response of optimization model of inventory system under stochastic disturbance based on ADRC in initial state
图6 基于自抗扰控制的随机扰动库存系统优化模型参数整定后跟踪曲线
Fig. 6 Tracking curve of optimization model of inventory system under stochastic disturbance based on ADRC after parameter tuning
图7 基于自抗扰控制的随机扰动库存系统优化模型参数整定后阶跃响应
Fig. 7 Step response of optimization model of inventory system under stochastic disturbance based on ADRC after parameter tuning
周期 | 销量 | 周期 | 销量 | 周期 | 销量 | 周期 | 销量 | 周期 | 销量 |
---|---|---|---|---|---|---|---|---|---|
1 | 140 | 11 | 312 | 21 | 116 | 31 | 481 | 41 | 525 |
2 | 182 | 12 | 401 | 22 | 168 | 32 | 394 | 42 | 649 |
3 | 238 | 13 | 328 | 23 | 41 | 33 | 176 | 43 | 750 |
4 | 549 | 14 | 370 | 24 | 48 | 34 | 281 | 44 | 774 |
5 | 586 | 15 | 433 | 25 | 38 | 35 | 292 | 45 | 504 |
6 | 536 | 16 | 563 | 26 | 80 | 36 | 420 | 46 | 441 |
7 | 0 | 17 | 662 | 27 | 137 | 37 | 457 | 47 | 439 |
8 | 14 | 18 | 316 | 28 | 39 | 38 | 387 | 48 | 445 |
9 | 472 | 19 | 247 | 29 | 168 | 39 | 354 | 49 | 649 |
10 | 497 | 20 | 409 | 30 | 71 | 40 | 344 | 50 | 454 |
表2 某批发市场米醋实际销售量数据
Tab. 2 Actual sales volume data of rice vinegar in wholesale market
周期 | 销量 | 周期 | 销量 | 周期 | 销量 | 周期 | 销量 | 周期 | 销量 |
---|---|---|---|---|---|---|---|---|---|
1 | 140 | 11 | 312 | 21 | 116 | 31 | 481 | 41 | 525 |
2 | 182 | 12 | 401 | 22 | 168 | 32 | 394 | 42 | 649 |
3 | 238 | 13 | 328 | 23 | 41 | 33 | 176 | 43 | 750 |
4 | 549 | 14 | 370 | 24 | 48 | 34 | 281 | 44 | 774 |
5 | 586 | 15 | 433 | 25 | 38 | 35 | 292 | 45 | 504 |
6 | 536 | 16 | 563 | 26 | 80 | 36 | 420 | 46 | 441 |
7 | 0 | 17 | 662 | 27 | 137 | 37 | 457 | 47 | 439 |
8 | 14 | 18 | 316 | 28 | 39 | 38 | 387 | 48 | 445 |
9 | 472 | 19 | 247 | 29 | 168 | 39 | 354 | 49 | 649 |
10 | 497 | 20 | 409 | 30 | 71 | 40 | 344 | 50 | 454 |
周期 | 无扰动 | 扰动 | 自抗扰 | 周期 | 无扰动 | 扰动 | 自抗扰 |
---|---|---|---|---|---|---|---|
1 | 119 | 119 | 128 | 26 | 47 | 46 | 96 |
2 | 181 | 181 | 165 | 27 | 107 | 107 | 139 |
3 | 235 | 235 | 208 | 28 | 83 | 83 | 110 |
4 | 443 | 443 | 354 | 29 | 117 | 117 | 176 |
5 | 611 | 611 | 401 | 30 | 114 | 114 | 172 |
6 | 610 | 610 | 356 | 31 | 318 | 797 | 601 |
7 | 254 | 254 | 240 | 32 | 456 | 697 | 687 |
8 | -15 | 0 | 69 | 33 | 307 | 319 | 674 |
9 | 226 | 226 | 269 | 34 | 246 | 217 | 593 |
10 | 477 | 477 | 359 | 35 | 280 | 254 | 457 |
11 | 422 | 422 | 345 | 36 | 368 | 0 | 242 |
12 | 382 | 382 | 287 | 37 | 454 | 375 | 388 |
13 | 361 | 361 | 254 | 38 | 437 | 439 | 355 |
14 | 353 | 353 | 305 | 39 | 380 | 395 | 329 |
15 | 405 | 405 | 363 | 40 | 348 | 359 | 331 |
16 | 516 | 995 | 657 | 41 | 446 | 453 | 447 |
17 | 641 | 727 | 675 | 42 | 607 | 611 | 552 |
18 | 488 | 479 | 622 | 43 | 738 | 740 | 629 |
19 | 278 | 257 | 516 | 44 | 803 | 804 | 640 |
20 | 312 | 296 | 355 | 45 | 649 | 650 | 561 |
21 | 217 | 207 | 169 | 46 | 471 | 471 | 428 |
22 | 126 | 121 | 101 | 47 | 414 | 414 | 385 |
23 | 63 | 60 | 44 | 48 | 417 | 417 | 414 |
24 | 18 | 17 | 60 | 49 | 549 | 549 | 547 |
25 | 17 | 16 | 56 | 50 | 540 | 540 | 573 |
表3 库存系统订货量仿真结果
Tab. 3 Simulation results of order quantity in inventory system
周期 | 无扰动 | 扰动 | 自抗扰 | 周期 | 无扰动 | 扰动 | 自抗扰 |
---|---|---|---|---|---|---|---|
1 | 119 | 119 | 128 | 26 | 47 | 46 | 96 |
2 | 181 | 181 | 165 | 27 | 107 | 107 | 139 |
3 | 235 | 235 | 208 | 28 | 83 | 83 | 110 |
4 | 443 | 443 | 354 | 29 | 117 | 117 | 176 |
5 | 611 | 611 | 401 | 30 | 114 | 114 | 172 |
6 | 610 | 610 | 356 | 31 | 318 | 797 | 601 |
7 | 254 | 254 | 240 | 32 | 456 | 697 | 687 |
8 | -15 | 0 | 69 | 33 | 307 | 319 | 674 |
9 | 226 | 226 | 269 | 34 | 246 | 217 | 593 |
10 | 477 | 477 | 359 | 35 | 280 | 254 | 457 |
11 | 422 | 422 | 345 | 36 | 368 | 0 | 242 |
12 | 382 | 382 | 287 | 37 | 454 | 375 | 388 |
13 | 361 | 361 | 254 | 38 | 437 | 439 | 355 |
14 | 353 | 353 | 305 | 39 | 380 | 395 | 329 |
15 | 405 | 405 | 363 | 40 | 348 | 359 | 331 |
16 | 516 | 995 | 657 | 41 | 446 | 453 | 447 |
17 | 641 | 727 | 675 | 42 | 607 | 611 | 552 |
18 | 488 | 479 | 622 | 43 | 738 | 740 | 629 |
19 | 278 | 257 | 516 | 44 | 803 | 804 | 640 |
20 | 312 | 296 | 355 | 45 | 649 | 650 | 561 |
21 | 217 | 207 | 169 | 46 | 471 | 471 | 428 |
22 | 126 | 121 | 101 | 47 | 414 | 414 | 385 |
23 | 63 | 60 | 44 | 48 | 417 | 417 | 414 |
24 | 18 | 17 | 60 | 49 | 549 | 549 | 547 |
25 | 17 | 16 | 56 | 50 | 540 | 540 | 573 |
周期 | 无扰动 | 扰动 | 自抗扰 | 周期 | 无扰动 | 扰动 | 自抗扰 |
---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 26 | 203 | 567 | 187 |
2 | -21 | -21 | 0 | 27 | 170 | 533 | 163 |
3 | -1 | -1 | 2 | 28 | 140 | 503 | 147 |
4 | -3 | -3 | 0 | 29 | 184 | 547 | 196 |
5 | -106 | -106 | -44 | 30 | 133 | 496 | 168 |
6 | 25 | 25 | 25 | 31 | 175 | 39 | 222 |
7 | 99 | 99 | 86 | 32 | 12 | -145 | 194 |
8 | 353 | 353 | 164 | 33 | 74 | 303 | 239 |
9 | 324 | 339 | 191 | 34 | 206 | 447 | 308 |
10 | 78 | 93 | 80 | 35 | 171 | 382 | 377 |
11 | 58 | 73 | 74 | 36 | 159 | 744 | 452 |
12 | 168 | 182 | 120 | 37 | 108 | 324 | 546 |
13 | 149 | 164 | 79 | 38 | 104 | 243 | 488 |
14 | 182 | 196 | 88 | 39 | 154 | 294 | 506 |
15 | 165 | 179 | 67 | 40 | 180 | 335 | 483 |
16 | 137 | -349 | 53 | 41 | 184 | 350 | 453 |
17 | 90 | 432 | 49 | 42 | 105 | 278 | 396 |
18 | 68 | 497 | 101 | 43 | 62 | 240 | 370 |
19 | 240 | 660 | 158 | 44 | 51 | 230 | 363 |
20 | 271 | 670 | 221 | 45 | 79 | 259 | 380 |
21 | 174 | 556 | 293 | 46 | 224 | 405 | 449 |
22 | 274 | 648 | 360 | 47 | 254 | 435 | 481 |
23 | 232 | 600 | 301 | 48 | 229 | 410 | 454 |
24 | 254 | 620 | 276 | 49 | 201 | 382 | 442 |
25 | 224 | 589 | 202 | 50 | 101 | 282 | 384 |
表4 库存系统剩余库存量仿真结果
Tab. 4 Simulation results of residual inventory in inventory system
周期 | 无扰动 | 扰动 | 自抗扰 | 周期 | 无扰动 | 扰动 | 自抗扰 |
---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 26 | 203 | 567 | 187 |
2 | -21 | -21 | 0 | 27 | 170 | 533 | 163 |
3 | -1 | -1 | 2 | 28 | 140 | 503 | 147 |
4 | -3 | -3 | 0 | 29 | 184 | 547 | 196 |
5 | -106 | -106 | -44 | 30 | 133 | 496 | 168 |
6 | 25 | 25 | 25 | 31 | 175 | 39 | 222 |
7 | 99 | 99 | 86 | 32 | 12 | -145 | 194 |
8 | 353 | 353 | 164 | 33 | 74 | 303 | 239 |
9 | 324 | 339 | 191 | 34 | 206 | 447 | 308 |
10 | 78 | 93 | 80 | 35 | 171 | 382 | 377 |
11 | 58 | 73 | 74 | 36 | 159 | 744 | 452 |
12 | 168 | 182 | 120 | 37 | 108 | 324 | 546 |
13 | 149 | 164 | 79 | 38 | 104 | 243 | 488 |
14 | 182 | 196 | 88 | 39 | 154 | 294 | 506 |
15 | 165 | 179 | 67 | 40 | 180 | 335 | 483 |
16 | 137 | -349 | 53 | 41 | 184 | 350 | 453 |
17 | 90 | 432 | 49 | 42 | 105 | 278 | 396 |
18 | 68 | 497 | 101 | 43 | 62 | 240 | 370 |
19 | 240 | 660 | 158 | 44 | 51 | 230 | 363 |
20 | 271 | 670 | 221 | 45 | 79 | 259 | 380 |
21 | 174 | 556 | 293 | 46 | 224 | 405 | 449 |
22 | 274 | 648 | 360 | 47 | 254 | 435 | 481 |
23 | 232 | 600 | 301 | 48 | 229 | 410 | 454 |
24 | 254 | 620 | 276 | 49 | 201 | 382 | 442 |
25 | 224 | 589 | 202 | 50 | 101 | 282 | 384 |
模型 | 缺货次数 | 剩余库存均值 | 剩余库存标准差 | 订货量均值 | 订货量标准差 |
---|---|---|---|---|---|
无扰动 | 0 | 349 | 197 | 145 | 87 |
扰动 | 2 | 364 | 237 | 320 | 214 |
自抗扰 | 0 | 358 | 191 | 237 | 164 |
表5 三种模型仿真结果对比
Tab. 5 Comparison of simulation results of three models
模型 | 缺货次数 | 剩余库存均值 | 剩余库存标准差 | 订货量均值 | 订货量标准差 |
---|---|---|---|---|---|
无扰动 | 0 | 349 | 197 | 145 | 87 |
扰动 | 2 | 364 | 237 | 320 | 214 |
自抗扰 | 0 | 358 | 191 | 237 | 164 |
1 | JABBARZADEH A, ALIABADI L, YAZDANPARAST R. Optimal payment time and replenishment decisions for retailer’s inventory system under trade credit and carbon emission constraints[J]. Operations Research, 2021, 21(1): 589-620. 10.1007/s12351-019-00457-5 |
2 | 纪雅杰,马德青,胡劲松. 供应商管理库存下基于消费者行为偏好的全渠道运营策略[J].中国管理科学,2021,29(1):82-96. 10.16381/j.cnki.issn1003-207x.2021.01.008 |
JI Y J, MA D Q, HU J S. Omni-channel operation strategy based on consumer behavior preference under vendor managed inventory[J]. Chinese Journal of Management Science, 2021, 29(1): 82-96. 10.16381/j.cnki.issn1003-207x.2021.01.008 | |
3 | 赵川,薛红. MAS在连锁零售企业多级库存控制中的应用研究[J]. 运筹与管理, 2013, 22(1): 252-255. 10.3969/j.issn.1007-3221.2013.01.038 |
ZHAO C, XUE H. Multistage inventory control system in retail-chain based on MAS[J]. Operations Research and Management Science, 2013, 22(1): 252-255. 10.3969/j.issn.1007-3221.2013.01.038 | |
4 | 赵菊,周永务. 两层供应链三级库存系统共同生产补货及协调策略[J]. 系统工程理论与实践, 2012, 32(10): 2163-2172. 10.3969/j.issn.1000-6788.2012.10.007 |
ZHAO J, ZHOU Y W. Joint replenishment and channel coordination policy for two echelon supply chain with multi-echelon inventory system[J]. Systems Engineering — Theory and Practice, 2012, 32(10): 2163-2172. 10.3969/j.issn.1000-6788.2012.10.007 | |
5 | 赵川,苗丽叶,杨浩雄,等. 随机需求下双渠道供应链库存动态交互优化[J]. 计算机应用, 2020, 40(9):2754-2761. 10.11772/j.issn.1001-9081.2019122225 |
ZHAO C, MIAO L Y, YANG H X, et al. Interactive dynamic optimization of dual-channel supply chain inventory under stochastic demand[J]. Journal of Computer Applications, 2020, 40(9): 2754-2761. 10.11772/j.issn.1001-9081.2019122225 | |
6 | 周三元,张向阳. 服装供应链牛鞭效应仿真研究[J]. 数学的实践与认识, 2019, 49(15):290-298. |
ZHOU S Y, ZHANG X Y. Simulation research on bullwhip effect in clothing supply chain[J]. Mathematics in Practice and Theory, 2019, 49(15): 290-298. | |
7 | 李丹. 复杂物流网络下多层级供应链均衡优化仿真[J]. 计算机仿真, 2019, 36(6): 373-377. 10.3969/j.issn.1006-9348.2019.06.077 |
LI D. Multi-level supply chain equilibrium optimization simulation under complex logistics network[J]. Computer Simulation, 2019, 36(6): 373-377. 10.3969/j.issn.1006-9348.2019.06.077 | |
8 | LI Q K, LI Y G, LIN H. H∞ control of two-time-scale Markovian switching production-inventory systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 1065-1073. 10.1109/tcst.2017.2692748 |
9 | SIMON H A. On the application of servomechanism theory in the study of production control[J]. Econometrica, 1952, 20(2): 247-268. 10.2307/1907849 |
10 | TOWILL D R, NAIM M M, WIKNER J. Industrial dynamics simulation models in the design of supply chains[J]. International Journal of Physical Distribution and Logistics Management, 1992, 22(5): 3-13. 10.1108/09600039210016995 |
11 | JING Y, WANG X, LI W C, et al. Simulation and PID control of bullwhip effect in closed-loop supply chain based on noise bandwidth[J]. International Journal of Applied Mathematics and Statistics, 2013, 41(11): 286-294. 872 |
12 | JOHN S, NAIM M M, TOWILL D R. Dynamic analysis of a WIP compensated decision support system[J]. International Journal of Manufacturing System Design, 1994, 1(4): 283-297. |
13 | ZHOU L, NAIM M M, DISNEY S M. The impact of product returns and remanufacturing uncertainties on the dynamic performance of a multi-echelon closed-loop supply chain[J]. International Journal of Production Economics, 2017, 183(Pt B): 487-502. 10.1016/j.ijpe.2016.07.021 |
14 | ZAHER H, ZAKI T T. Optimal control theory to solve production inventory system in supply chain management[J]. Journal of Mathematics Research, 2014, 6(4): 109-117. 10.5539/jmr.v6n4p109 |
15 | SUBRAMANIAN K, RAWLINGS J B, MARAVELIAS C T, et al. Integration of control theory and scheduling methods for supply chain management[J]. Computers and Chemical Engineering, 2013, 51: 4-20. 10.1016/j.compchemeng.2012.06.012 |
16 | 徐君群. 动态供应链网络的H∞控制[J]. 管理科学学报, 2012, 15(9):58-63. 10.3969/j.issn.1007-9807.2012.09.006 |
XU J Q. H∞ control of dynamic supply chain network[J]. Journal of Management Sciences in China, 2012, 15(9): 58-63. 10.3969/j.issn.1007-9807.2012.09.006 | |
17 | ZHAO Y X, ZHAO C, HE M K, et al. A state-feedback approach to inventory control: analytical and empirical studies[J]. Production and Operations Management, 2016, 25(3): 535-547. 10.1111/poms.12522 |
18 | HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 55(3): 900-906. 10.1109/tie.2008.2011621 |
19 | 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510. 10.7641/CTA.2013.31087 |
GAO Z Q. On the foundation of active disturbance rejection control[J]. Control Theory and Applications, 2013, 30(12): 1498-1510. 10.7641/CTA.2013.31087 | |
20 | GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]// Proceedings of the 2003 American Control Conference. Piscataway: IEEE, 2003: 4989-4996. |
21 | ZHAO Z L, GUO B Z. On active disturbance rejection control for nonlinear systems using time-varying gain[J]. European Journal of Control, 2015, 23: 62-70. 10.1016/j.ejcon.2015.02.002 |
22 | LI S L, YANG X, YANG D. Active disturbance rejection control for high pointing accuracy and rotation speed[J]. Automatica, 2009, 45(8): 1854-1860. 10.1016/j.automatica.2009.03.029 |
23 | 段慧达,田彦涛,李津淞,等. 一类高阶非线性系统的级联自抗扰控制[J]. 控制与决策, 2012, 27(2): 216-220. |
DUAN H D, TIAN Y T, LI J S, et al. Control for a class of higher order nonlinear system based on cascade of active disturbance rejection controller[J]. Control and Decision, 2012, 27(2): 216-220. | |
24 | SIRA-RAMÍREZ H, LINARES-FLORES J, GARCÍA-RODRÍGUEZ C, et al. On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5): 2056-2063. 10.1109/tcst.2014.2298238 |
25 | 金辉宇,朱子毅,兰维瑶. 二阶线性自抗扰控制系统的内部稳定性[J]. 控制与信息技术, 2020(2):8-11. |
JIN H Y, ZHU Z Y, LAN W Y. Internal stability of second-order linear active disturbance rejection control system[J]. Control and Information Technology, 2020(2): 8-11. | |
26 | 高阳,吴文海,高丽. 高阶不确定非线性系统的线性自抗扰控制[J]. 控制与决策, 2020, 35(2):483-491. |
GAO Y, WU W H, GAO L. Linear active disturbance rejection control for high-order nonlinear systems with uncertainty[J]. Control and Decision, 2020, 35(2): 483-491. | |
27 | 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008: 255-261. |
HAN J Q. Active Disturbance Rejection Control Technique — the Technique for Estimating and Compositing the Uncertainties[M]. Beijing: National Defense Industry Press, 2008: 255-261. | |
28 | TSAUR R C. Forecasting by fuzzy double exponential smoothing model[J]. International Journal of Computer Mathematics, 2003, 80(11): 1351-1361. 10.1080/00207160310001597233 |
29 | 葛立明,李宗刚,王世伟,等. 基于调节/观测时间的自抗扰控制器参数整定[J]. 控制与决策, 2017, 32(7):1333-1337. |
GE L M, LI Z G, WANG S W, et al. Parameter-tuning of active disturbance rejection control based on settling/observing time[J]. Control and Decision, 2017, 32(7): 1333-1337. | |
30 | 吴猛,朱喜林,鄂世举,等. 自抗扰控制器参数整定方法的研究[J]. 北京理工大学学报, 2009, 29(2):121-123, 127. |
WU M, ZHU X L, E S J, et al. A study on parameters setting methods for Active Disturbance Rejection Controller (ADRC)[J]. Transactions of Beijing Institute of Technology, 2009, 29(2): 121-123, 127. |
[1] | 高胡震, 杜昌平, 郑耀. 基于扩张状态观测器的无人机云台系统控制算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 604-610. |
[2] | 赵川, 苗丽叶, 杨浩雄, 何明珂. 随机需求下双渠道供应链库存动态交互优化[J]. 计算机应用, 2020, 40(9): 2754-2761. |
[3] | 吴庆贺, 吴海锋, 沈勇, 曾玉. 工业噪声环境下多麦状态空间模型语音增强算法[J]. 计算机应用, 2020, 40(5): 1476-1482. |
[4] | 罗蕊, 师五喜, 李宝全. 受侧滑和滑移影响的移动机器人自抗扰控制[J]. 计算机应用, 2018, 38(5): 1517-1522. |
[5] | 喻德旷, 杨谊, 钱俊. 云计算资源的动态随机扰动的粒子群优化策略[J]. 计算机应用, 2018, 38(12): 3490-3495. |
[6] | 贺智明 宋建国 梅宏标. 结合元胞自动机的果蝇优化算法[J]. 计算机应用, 2014, 34(8): 2295-2298. |
[7] | 陈珊珊. P2P网络中基于权重因素的信任模型[J]. 计算机应用, 2013, 33(06): 1612-1614. |
[8] | 孙辉 龙腾 赵嘉. 基于微粒群与混合蛙跳融合的群体智能算法[J]. 计算机应用, 2012, 32(02): 428-431. |
[9] | 赵宁社 王国庆 翟正军. 一种基于状态空间的资源健康度量方法及应用[J]. 计算机应用, 2010, 30(05): 1376-1378. |
[10] | 陈君彦 齐二石 刘亮. 多维异步随机扰动的粒子群优化算法[J]. 计算机应用, 2009, 29(12): 3267-3269. |
[11] | 田明 刘衍珩 余雪岗 顾广聚 王品. 基于局部信息的WLAN位置预测器[J]. 计算机应用, 2006, 26(12): 2813-2816. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||