1 |
赵祥模,惠飞,史昕,等. 泛在交通信息服务系统的概念、架构与关键技术[J]. 交通运输工程学报, 2014, 14(4):105⁃115. 10.3969/j.issn.1671-1637.2014.04.013
|
|
ZHAO X M, HUI F, SHI X, et al. Concept, architecture and challenging technologies of ubiquitous traffic information service system[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4):105-115. 10.3969/j.issn.1671-1637.2014.04.013
|
2 |
秦严严,王昊,何兆益,等. ACC车辆跟驰建模及模型特性分析[J]. 重庆交通大学学报(自然科学版), 2020, 39(11): 33-37. 10.3969/j.issn.1674
|
|
QIN Y Y, WANG H, HE Z Y, et al. Car-following modeling and model characterization for ACC vehicles[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(11): 33-37. 10.3969/j.issn.1674
|
3 |
BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic flow congestion and numerical simulation[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(2): 1035-1042. 10.1103/physreve.51.1035
|
4 |
JIANG R, WU Q S, ZHU Z J. Full velocity difference model for a car-following theory[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(1): No.017101. 10.1103/physreve.64.017101
|
5 |
HAN J Y, ZHANG J L, WANG X Y, et al. An extended car-following model considering generalized preceding vehicles in V2X environment[J]. Future Internet, 2020, 12(12): No.216. 10.3390/fi12120216
|
6 |
安树科,徐良杰,钱良辉,等. 考虑前方多车优化速度信息的车辆跟驰模型[J]. 东南大学学报(自然科学版), 2020, 50(6):1156-1162. 10.3969/j.issn.1001-0505.2020.06.024
|
|
AN S K, XU L J, QIAN L H, et al. Car-following model with optimal velocity information of multiple-vehicle ahead[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(6):1156-1162. 10.3969/j.issn.1001-0505.2020.06.024
|
7 |
PENG Y, LIU S J, YU D Z. An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view[J]. Physica A: Statistical Mechanics and its Applications, 2020, 538: No.122967. 10.1016/j.physa.2019.122967
|
8 |
PENG G H, LU W Z, HE H D, et al. Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 40:197⁃205. 10.1016/j.cnsns.2016.04.024
|
9 |
魏福禄,刘杨. 经典跟驰模型的发展综述[J]. 吉林建筑大学学报, 2018, 35(4): 19-23. 10.3969/j.issn.1009-0185.2018.04.005
|
|
WEI F L, LIU Y. Review of the development of classic car-following models[J]. Journal of Jilin Jianzhu University, 2018, 35(4): 19-23. 10.3969/j.issn.1009-0185.2018.04.005
|
10 |
秦严严,王昊,冉斌. CACC车辆跟驰建模及混合交通流分析[J]. 交通运输系统工程与信息, 2018, 18(2): 60-65.
|
|
QIN Y Y, WANG H, RAN B. Car-following modeling for CACC vehicles and mixed traffic flow analysis[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 60-65.
|
11 |
杨龙海,张春,仇晓赟,等. 车辆跟驰模型的研究进展[J]. 交通运输工程学报, 2019, 19(5):125-138.
|
|
YANG L H, ZHANG C, QIU X Y, et al. Research progress on car-following models[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 125-138.
|
12 |
纪艺,史昕,赵祥模. 基于多前车信息融合的智能网联车辆跟驰模型[J]. 计算机应用, 2019, 39(12): 3685-3690.
|
|
JI Y, SHI X, ZHAO X M. Car-following model for intelligent connected vehicles based on multiple headway information fusion[J]. Journal of Computer Applications, 2019, 39(12):3685-3690.
|
13 |
任胜利,黄益绍,王正武,等. 考虑驾驶员和车型特征的全速度差跟驰模型与控制稳定性[J]. 系统工程, 2020, 38(6):90-96.
|
|
REN S L, HUANG Y S, WANG Z W, et al. The full velocity difference model considering drivers’ and vehicles’ characteristics and its control stability[J]. Systems Engineering, 2020, 38(6):90-96.
|
14 |
黄宇达,赵红专,王迤冉. 考虑车辆协同与时间延迟的跟驰模型的弱非线性分析[J]. 计算机应用与软件, 2021, 38(4):48-57. 10.3969/j.issn.1000-386x.2021.04.009
|
|
HUANG Y D, ZHAO H Z, WANG Y R. Weak nonlinear analysis of car-following model considering vehicle coordination and time delay[J]. Computer Applications and Software, 2021, 38(4):48-57. 10.3969/j.issn.1000-386x.2021.04.009
|
15 |
姚志洪,顾秋凡,徐桃让,等. 考虑时延的智能网联汽车混合交通流稳定性分析[J]. 控制与决策, 2022, 37(6):1505-1512.
|
|
YAO Z H, GU Q F, XU T R, et al. Stability of mixed traffic flow with intelligent networked vehicles considering time delay[J]. Control and Decision, 2022, 37(6):1505-1512.
|
16 |
陈杰,费瑞波,刘燕,等. 考虑时间延迟的人工驾驶车辆与网联车辆混合交通流建模与分析[J]. 蚌埠学院学报, 2021, 10(2):123-128. 10.3969/j.issn.2095-297X.2021.02.026
|
|
CHEN J, FEI R B, LIU Y, et al. Modeling and analysis of mixed traffic flow with human-driving and connected vehicles considering time delay[J]. Journal of Bengbu University, 2021, 10(2):123-128. 10.3969/j.issn.2095-297X.2021.02.026
|
17 |
OROSZ G, WILSON R E, KRAUSKOPF B. Global bifurcation investigation of an optimal velocity traffic flow model with driver reaction time[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2): No.026207. 10.1103/physreve.70.026207
|
18 |
OROSZ G, KRAUSKOPF B, WILSON R E. Bifurcations and multiple traffic flow jams in a car-following model with reaction-time delay[J]. Physica D: Nonlinear Phenomena, 2005, 211(3/4):277-293. 10.1016/j.physd.2005.09.004
|
19 |
YU L, LI T, SHI Z K. Density waves in a traffic flow model with reaction-time delay[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(13):2607-2616. 10.1016/j.physa.2010.03.009
|
20 |
ZHOU J, SHI Z K, CAO J L. Nonlinear analysis of the optimal velocity difference model with reaction-time delay[J]. Physica A: Statistical Mechanics and its Applications, 2014, 396:77-87. 10.1016/j.physa.2013.11.007
|
21 |
JIA D, NGODUY D, VU H L. A multiclass microscopic model for heterogeneous platoon with vehicle-to-vehicle communication[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 311-335. 10.1080/21680566.2018.1434021
|
22 |
ZHANG Y C, XUE Y, ZHANG P, et al. Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference[J]. Physica A: Statistical Mechanics and its Applications, 2019, 514:133-140. 10.1016/j.physa.2018.09.012
|
23 |
MA G Y, MA M H, LIANG S D, et al. An improved car-following model accounting for the time-delayed velocity difference and backward looking effect[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 85: No.105221. 10.1016/j.cnsns.2020.105221
|
24 |
HE G Z, HUA C C. Linear stability and nonlinear analysis of an extended optimal velocity model considering the speed limit[J]. Journal of Applied Mathematics and Physics, 2020, 8(3):507-518.
|
25 |
NAKAYAMA A, SUGIYAMA Y, HASEBE K. Effect of looking at the car that follows in an optimal velocity model of traffic flow[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(1): No.016112. 10.1103/physreve.65.016112
|
26 |
曲昭伟,潘昭天,陈永恒,等. 基于最优速度模型的改进安全距离跟驰模型[J]. 吉林大学学报(工学版), 2019, 49(4):1092-1099.
|
|
QU Z W, PAN Z T, CHEN Y H, et al. Car-following model with improving safety distance based on optimal velocity model[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4):1092-1099.
|
27 |
王划一,杨西侠,林家恒. 现代控制理论基础[M]. 北京:国防工业出版社, 2009: 376-424.
|
|
WANG H Y, YANG X X, LIN J H. Basis of Modern Control Theory[M]. Beijing: National Defense Industry Press, 2009: 376-424.
|
28 |
宗芳,石佩鑫,王猛,等. 考虑前后多车的网联自动驾驶车辆混流跟驰模型[J]. 中国公路学报, 2021, 34(7):105-117. 10.3969/j.issn.1001-7372.2021.07.009
|
|
ZONG F, SHI P X, WANG M, et al. Connected and automated vehicle mixed-traffic car-following model considering states of multiple front and rear vehicles[J]. China Journal of Highway and Transport, 2021, 34(7):105-117. 10.3969/j.issn.1001-7372.2021.07.009
|
29 |
TANG T Q, HUANG H J, ZHAO S G, et al. An extended OV model with consideration of driver’s memory[J]. International Journal of Modern Physics B, 2009, 23(5) : 743-752. 10.1142/s0217979209051966
|
30 |
韩祥临,欧桥,王心宇,等. 车辆跟驰模型稳定的充分必要条件[J]. 湖州师范学院学报, 2021, 43(2):1-6. 10.3969/j.issn.1009-1734.2021.02.001
|
|
HAN X L, OU Q, WANG X Y, et al. The sufficient and necessary condition for a class of generality car-following model[J]. Journal of Huzhou University, 2021, 43(2):1-6. 10.3969/j.issn.1009-1734.2021.02.001
|
31 |
李腾龙,惠飞. 考虑后视和最优速度记忆的跟驰模型及仿真[J]. 计算机工程与应用, 2017, 53(12):249-254, 270.
|
|
LI T L, HUI F. Numerical simulation of car-following model considering optimal velocity changes with memory and backward looking effect[J]. Computer Engineering and Applications, 2017, 53(12):249-254, 270.
|