《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (3): 820-826.DOI: 10.11772/j.issn.1001-9081.2022010154
所属专题: 先进计算
收稿日期:
2022-02-14
修回日期:
2022-04-14
接受日期:
2022-04-15
发布日期:
2022-04-21
出版日期:
2023-03-10
通讯作者:
吴永红
作者简介:
向君幸(1997—),男,重庆人,硕士研究生,主要研究方向:大数据、机器学习Received:
2022-02-14
Revised:
2022-04-14
Accepted:
2022-04-15
Online:
2022-04-21
Published:
2023-03-10
Contact:
Yonghong WU
About author:
XIANG Junxing, born in 1997, M. S. candidate. His research interests include big data, machine learning.
Supported by:
摘要:
针对蝴蝶优化算法(BOA)收敛速度较慢和过早收敛到局部解的问题,提出一种基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法(HSSBOA)。首先,将樽海鞘群算法(SSA)引入BOA中,使算法快速处理局部搜索阶段,并更新种群位置,从而更有效地完成寻优过程,避免算法陷入局部最优;然后,引入邻域重心反向学习以便更好地帮助算法在邻域内进行小范围精确搜索,从而提高算法的精度;最后,引入动态切换概率以改善搜索中全局与局部的比重,从而加快算法的搜索速度。选取10个标准检测函数进行测试,将HSSBOA与几个先进的优化算法从收敛精度、高维度数据、收敛速度、Wilcoxon秩和检验和平均绝对误差(MAE)五个方面进行对比分析。研究结果表明,相较于其他算法,HSSBOA取得了更优的结果。消融实验进一步验证了各项改进均为正向作用。实例问题上的表现表明相较于其他方法,在求解有约束的复杂问题时,HSSBOA能够更有效地搜索出最优解。可见HSSBOA在寻优精度、稳定性和收敛效率等方面取得了一定的优势,并且能够求解复杂的现实问题。
中图分类号:
向君幸, 吴永红. 基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法[J]. 计算机应用, 2023, 43(3): 820-826.
Junxing XIANG, Yonghong WU. Hybrid salp swarm and butterfly optimization algorithm combined with neighborhood centroid opposition-based learning[J]. Journal of Computer Applications, 2023, 43(3): 820-826.
参数 | 取值 | 参数意义 |
---|---|---|
0.01 | 感觉模态 | |
Ii | 由目标函数计算得到 | 刺激强度,由个体适应度表示 |
幂指数 | ||
切换概率,用于平衡搜索阶段 | ||
惯性权重,用于改良算法的搜索能力 | ||
均匀分布上的随机数,用于邻域重心反向学习 | ||
由 | 种群的重心 | |
高斯扰动中的方差项,根据迭代步骤调整大小,以增加种群的多样性 |
表1 HSSBOA中的参数
Tab. 1 Parameters in HSSBOA
参数 | 取值 | 参数意义 |
---|---|---|
0.01 | 感觉模态 | |
Ii | 由目标函数计算得到 | 刺激强度,由个体适应度表示 |
幂指数 | ||
切换概率,用于平衡搜索阶段 | ||
惯性权重,用于改良算法的搜索能力 | ||
均匀分布上的随机数,用于邻域重心反向学习 | ||
由 | 种群的重心 | |
高斯扰动中的方差项,根据迭代步骤调整大小,以增加种群的多样性 |
函数类型 | 函数表达式 | 维数 | 范围 | 最优值 |
---|---|---|---|---|
单峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
多峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 |
表2 标准检测函数相关描述
Tab. 2 Description of benchmark functions
函数类型 | 函数表达式 | 维数 | 范围 | 最优值 |
---|---|---|---|---|
单峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
多峰检测函数 | 30/500 | 0 | ||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 | |||
30/500 | 0 |
函数 | 指标 | HSSBOA | HHO | WOA | SSA | BOA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | ||
F1 | mean | 0 | 0 | 3.95E-97 | 9.71E-96 | 3.30E-75 | 1.79E-67 | 1.13E-08 | 9.31E+04 | 1.27E-11 | 1.42E-11 |
std | 0 | 0 | 1.72E-96 | 3.47E-95 | 1.31E-74 | 9.83E-67 | 3.26E-09 | 6.01E+03 | 9.07E-13 | 8.52E-13 | |
F2 | mean | 0 | 0 | 1.29E-49 | 4.58E-49 | 8.71E-01 | 8.07E+00 | 7.02E-01 | 4.15E+00 | 4.97E-09 | 5.34E-09 |
std | 0 | 0 | 3.11E-48 | 1.81E-48 | 1.25E+00 | 2.03E+00 | 3.61E-01 | 3.11E-01 | 3.32E-10 | 2.95E-10 | |
F3 | mean | 0 | 3.33E-296 | 7.87E-49 | 2.48E-47 | 2.04E-51 | 4.52E-47 | 1.34E+17 | — | 4.47E+41 | — |
std | 0 | 0 | 3.11E-48 | 1.28E-46 | 7.04E-51 | 1.37E-46 | 5.69E+17 | — | 1.34E+41 | — | |
F4 | mean | 6.27E-05 | 7.25E-05 | 1.78E-04 | 1.58E-04 | 3.17E-03 | 5.09E-03 | 7.86E-02 | 2.81E+02 | 1.49E-03 | 1.58E-03 |
std | 6.89E-05 | 2.15E-04 | 1.74E-04 | 1.65E-04 | 6.04E-03 | 5.44E-03 | 2.57E-02 | 3.82E+01 | 5.37E-04 | 7.16E-04 | |
F5 | mean | 0 | 0 | 5.05E-98 | 1.16E-94 | 5.44E-73 | 1.82E-68 | 2.40E-01 | 2.15E+05 | 1.13E-11 | 1.46E-11 |
std | 0 | 0 | 2.76E-97 | 4.07E-94 | 1.96E-72 | 9.81E-68 | 2.89E-01 | 1.60E+04 | 8.43E-13 | 9.68E-13 | |
F6 | mean | 0 | 0 | 1.45E-55 | 2.23E-05 | 2.03E-51 | 3.71E-50 | 2.94E+00 | 3.13E+02 | 8.38E-10 | 2.36E-09 |
std | 0 | 0 | 7.93E-55 | 8.65E-05 | 8.29E-51 | 1.90E-49 | 1.51E+00 | 1.33E+01 | 7.55E-10 | 7.59E-10 | |
F7 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 7.80E-03 | 8.70E+02 | 4.62E-12 | 1.65E-11 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 8.50E-03 | 5.82E+01 | 2.73E-12 | 1.10E-12 | |
F8 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 5.26E+01 | 3.18E+03 | 1.93E+01 | 0 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 1.78E+01 | 1.22E+02 | 5.76E+01 | 0 | |
F9 | mean | 0 | 0 | 1.67E-46 | 9.96E+02 | 4.61E+02 | 8.11E+03 | 1.09E+00 | 1.04E+04 | 1.10E-11 | 1.54E-13 |
std | 0 | 0 | 9.08E-46 | 1.76E+03 | 1.05E+02 | 6.00E+02 | 1.18E+00 | 7.07E+02 | 1.08E-12 | 6.41E-13 | |
F10 | mean | 8.88E-16 | 8.88E-16 | 8.88E-16 | 8.88E-16 | 4.44E-15 | 3.49E-15 | 1.91E+00 | 1.43E+01 | 6.06E-09 | 5.58E-09 |
std | 0 | 0 | 0 | 0 | 2.64E-15 | 2.46E-15 | 8.55E-01 | 2.82E-01 | 3.93E-10 | 2.74E-10 |
表3 标准检测函数上的实验结果
Tab. 3 Experimental results on benchmark functions
函数 | 指标 | HSSBOA | HHO | WOA | SSA | BOA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | 30维 | 500维 | ||
F1 | mean | 0 | 0 | 3.95E-97 | 9.71E-96 | 3.30E-75 | 1.79E-67 | 1.13E-08 | 9.31E+04 | 1.27E-11 | 1.42E-11 |
std | 0 | 0 | 1.72E-96 | 3.47E-95 | 1.31E-74 | 9.83E-67 | 3.26E-09 | 6.01E+03 | 9.07E-13 | 8.52E-13 | |
F2 | mean | 0 | 0 | 1.29E-49 | 4.58E-49 | 8.71E-01 | 8.07E+00 | 7.02E-01 | 4.15E+00 | 4.97E-09 | 5.34E-09 |
std | 0 | 0 | 3.11E-48 | 1.81E-48 | 1.25E+00 | 2.03E+00 | 3.61E-01 | 3.11E-01 | 3.32E-10 | 2.95E-10 | |
F3 | mean | 0 | 3.33E-296 | 7.87E-49 | 2.48E-47 | 2.04E-51 | 4.52E-47 | 1.34E+17 | — | 4.47E+41 | — |
std | 0 | 0 | 3.11E-48 | 1.28E-46 | 7.04E-51 | 1.37E-46 | 5.69E+17 | — | 1.34E+41 | — | |
F4 | mean | 6.27E-05 | 7.25E-05 | 1.78E-04 | 1.58E-04 | 3.17E-03 | 5.09E-03 | 7.86E-02 | 2.81E+02 | 1.49E-03 | 1.58E-03 |
std | 6.89E-05 | 2.15E-04 | 1.74E-04 | 1.65E-04 | 6.04E-03 | 5.44E-03 | 2.57E-02 | 3.82E+01 | 5.37E-04 | 7.16E-04 | |
F5 | mean | 0 | 0 | 5.05E-98 | 1.16E-94 | 5.44E-73 | 1.82E-68 | 2.40E-01 | 2.15E+05 | 1.13E-11 | 1.46E-11 |
std | 0 | 0 | 2.76E-97 | 4.07E-94 | 1.96E-72 | 9.81E-68 | 2.89E-01 | 1.60E+04 | 8.43E-13 | 9.68E-13 | |
F6 | mean | 0 | 0 | 1.45E-55 | 2.23E-05 | 2.03E-51 | 3.71E-50 | 2.94E+00 | 3.13E+02 | 8.38E-10 | 2.36E-09 |
std | 0 | 0 | 7.93E-55 | 8.65E-05 | 8.29E-51 | 1.90E-49 | 1.51E+00 | 1.33E+01 | 7.55E-10 | 7.59E-10 | |
F7 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 7.80E-03 | 8.70E+02 | 4.62E-12 | 1.65E-11 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 8.50E-03 | 5.82E+01 | 2.73E-12 | 1.10E-12 | |
F8 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 5.26E+01 | 3.18E+03 | 1.93E+01 | 0 |
std | 0 | 0 | 0 | 0 | 0 | 0 | 1.78E+01 | 1.22E+02 | 5.76E+01 | 0 | |
F9 | mean | 0 | 0 | 1.67E-46 | 9.96E+02 | 4.61E+02 | 8.11E+03 | 1.09E+00 | 1.04E+04 | 1.10E-11 | 1.54E-13 |
std | 0 | 0 | 9.08E-46 | 1.76E+03 | 1.05E+02 | 6.00E+02 | 1.18E+00 | 7.07E+02 | 1.08E-12 | 6.41E-13 | |
F10 | mean | 8.88E-16 | 8.88E-16 | 8.88E-16 | 8.88E-16 | 4.44E-15 | 3.49E-15 | 1.91E+00 | 1.43E+01 | 6.06E-09 | 5.58E-09 |
std | 0 | 0 | 0 | 0 | 2.64E-15 | 2.46E-15 | 8.55E-01 | 2.82E-01 | 3.93E-10 | 2.74E-10 |
函数 | 检验值 | BOA | SSA | HHO | WOA |
---|---|---|---|---|---|
F1 | t-value | 5.787 5 | 6.056 2 | 2.516 4 | 3.246 1 |
p-value | 0.000 0 | 0.000 0 | 0.025 5 | 0.000 0 | |
F2 | t-value | 6.526 3 | 8.342 1 | 3.632 5 | 8.894 1 |
p-value | 0.000 0 | 0.000 0 | 0.000 2 | 0.000 0 | |
F3 | t-value | 12.513 0 | 11.135 9 | 4.421 5 | 3.625 1 |
p-value | 0.000 0 | 0.000 0 | 0.001 4 | 0.005 2 | |
F4 | t-value | 2.589 3 | 4.153 9 | 2.018 0 | 2.626 4 |
p-value | 0.041 8 | 0.002 1 | 0.243 1 | 0.038 9 | |
F5 | t-value | 8.891 4 | 9.354 0 | 1.634 0 | 2.912 4 |
p-value | 0.000 1 | 0.000 3 | 0.270 1 | 0.024 5 | |
F6 | t-value | 7.564 3 | 9.159 8 | 2.235 6 | 3.019 9 |
p-value | 0.000 0 | 0.000 1 | 0.002 3 | 0.002 2 | |
F7 | t-value | 7.873 2 | 9.152 6 | 0.000 0 | 0.000 0 |
p-value | 0.000 0 | 0.000 1 | 0.000 0 | 0.000 0 | |
F8 | t-value | 12.155 7 | 11.986 1 | 0.000 0 | 0.000 0 |
p-value | 0.000 4 | 0.000 1 | 0.000 0 | 0.000 0 | |
F9 | t-value | 8.151 5 | 11.135 5 | 3.155 1 | 11.611 5 |
p-value | 0.000 0 | 0.000 1 | 0.005 3 | 0.000 0 | |
F10 | t-value | 7.145 7 | 10.366 1 | 0.000 0 | 1.662 1 |
p-value | 0.000 2 | 0.000 0 | 0.000 0 | 0.230 1 |
表4 HSSBOA与其他算法的t检验比较
Tab. 4 Comparison of t test between HSSBOA and other algorithms
函数 | 检验值 | BOA | SSA | HHO | WOA |
---|---|---|---|---|---|
F1 | t-value | 5.787 5 | 6.056 2 | 2.516 4 | 3.246 1 |
p-value | 0.000 0 | 0.000 0 | 0.025 5 | 0.000 0 | |
F2 | t-value | 6.526 3 | 8.342 1 | 3.632 5 | 8.894 1 |
p-value | 0.000 0 | 0.000 0 | 0.000 2 | 0.000 0 | |
F3 | t-value | 12.513 0 | 11.135 9 | 4.421 5 | 3.625 1 |
p-value | 0.000 0 | 0.000 0 | 0.001 4 | 0.005 2 | |
F4 | t-value | 2.589 3 | 4.153 9 | 2.018 0 | 2.626 4 |
p-value | 0.041 8 | 0.002 1 | 0.243 1 | 0.038 9 | |
F5 | t-value | 8.891 4 | 9.354 0 | 1.634 0 | 2.912 4 |
p-value | 0.000 1 | 0.000 3 | 0.270 1 | 0.024 5 | |
F6 | t-value | 7.564 3 | 9.159 8 | 2.235 6 | 3.019 9 |
p-value | 0.000 0 | 0.000 1 | 0.002 3 | 0.002 2 | |
F7 | t-value | 7.873 2 | 9.152 6 | 0.000 0 | 0.000 0 |
p-value | 0.000 0 | 0.000 1 | 0.000 0 | 0.000 0 | |
F8 | t-value | 12.155 7 | 11.986 1 | 0.000 0 | 0.000 0 |
p-value | 0.000 4 | 0.000 1 | 0.000 0 | 0.000 0 | |
F9 | t-value | 8.151 5 | 11.135 5 | 3.155 1 | 11.611 5 |
p-value | 0.000 0 | 0.000 1 | 0.005 3 | 0.000 0 | |
F10 | t-value | 7.145 7 | 10.366 1 | 0.000 0 | 1.662 1 |
p-value | 0.000 2 | 0.000 0 | 0.000 0 | 0.230 1 |
类别 | BOA | SSA | HHO | WOA |
---|---|---|---|---|
性能比HSSBOA低的个数 | 10 | 10 | 7 | 8 |
性能与HSSBOA相同的个数 | 0 | 0 | 3 | 2 |
性能比HSSBOA高的个数 | 0 | 0 | 0 | 0 |
表5 t检验对比结果
Tab. 5 Comparison results of t-test
类别 | BOA | SSA | HHO | WOA |
---|---|---|---|---|
性能比HSSBOA低的个数 | 10 | 10 | 7 | 8 |
性能与HSSBOA相同的个数 | 0 | 0 | 3 | 2 |
性能比HSSBOA高的个数 | 0 | 0 | 0 | 0 |
算法 | MAE | 排名 |
---|---|---|
HSSBOA | 4.75E-07 | 1 |
HHO | 1.66E-05 | 2 |
WOA | 2.09E-05 | 3 |
SSA | 1.27E-05 | 4 |
BOA | 8.10E-04 | 5 |
表6 HSSBOA与其他算法的MAE排序
Tab. 6 MAE ranking of HSSBOA and other algorithms
算法 | MAE | 排名 |
---|---|---|
HSSBOA | 4.75E-07 | 1 |
HHO | 1.66E-05 | 2 |
WOA | 2.09E-05 | 3 |
SSA | 1.27E-05 | 4 |
BOA | 8.10E-04 | 5 |
算法 | MAE | 相较于HSSBOA的变化 |
---|---|---|
HSSBOA | 4.75E-07 | — |
HSSBOA\改进SSA | 3.92E-06 | +3.45E-06 |
HSSBOA\邻域重心反向学习 | 1.02E-06 | +5.44E-07 |
HSSBOA\高斯扰动 | 6.52E-07 | +1.77E-07 |
HSSBOA\动态切换概率 | 8.83E-07 | +4.08E-07 |
表7 消融实验的结果对比
Tab. 7 Comparison of ablation experimental results
算法 | MAE | 相较于HSSBOA的变化 |
---|---|---|
HSSBOA | 4.75E-07 | — |
HSSBOA\改进SSA | 3.92E-06 | +3.45E-06 |
HSSBOA\邻域重心反向学习 | 1.02E-06 | +5.44E-07 |
HSSBOA\高斯扰动 | 6.52E-07 | +1.77E-07 |
HSSBOA\动态切换概率 | 8.83E-07 | +4.08E-07 |
算法 | 最优变量 | 最优值/kg | ||
---|---|---|---|---|
HSSBOA | 0.053 4 | 0.296 2 | 10.916 4 | 0.010 90 |
PSO | 0.051 7 | 0.357 6 | 11.244 5 | 0.012 67 |
HHO | 0.051 8 | 0.359 3 | 11.138 9 | 0.012 67 |
WOA | 0.051 2 | 0.345 2 | 12.004 0 | 0.012 68 |
数学优化 | 0.503 4 | 0.399 2 | 9.185 4 | 0.012 73 |
约束校正 | 0.050 0 | 0.315 9 | 14.250 0 | 0.012 83 |
表8 各方法求解弹簧设计问题结果的比较
Tab. 8 Result comparison of solving spring design problem by different methods
算法 | 最优变量 | 最优值/kg | ||
---|---|---|---|---|
HSSBOA | 0.053 4 | 0.296 2 | 10.916 4 | 0.010 90 |
PSO | 0.051 7 | 0.357 6 | 11.244 5 | 0.012 67 |
HHO | 0.051 8 | 0.359 3 | 11.138 9 | 0.012 67 |
WOA | 0.051 2 | 0.345 2 | 12.004 0 | 0.012 68 |
数学优化 | 0.503 4 | 0.399 2 | 9.185 4 | 0.012 73 |
约束校正 | 0.050 0 | 0.315 9 | 14.250 0 | 0.012 83 |
算法 | 最优变量 | 最优值/kg | |||
---|---|---|---|---|---|
HSSBOA | 0.794 2 | 0.406 3 | 40.895 1 | 177.631 5 | 5 768.695 7 |
GWO | 0.812 5 | 0.434 5 | 42.089 2 | 176.758 7 | 6 051.563 9 |
HHO | 0.817 6 | 0.407 3 | 42.091 7 | 176.719 6 | 6 000.462 6 |
WOA | 0.812 5 | 0.437 5 | 42.098 3 | 176.639 0 | 6 059.741 0 |
拉格朗日乘数 | 1.125 0 | 0.625 0 | 58.291 0 | 43.690 0 | 7 198.042 8 |
分支界 | 1.125 0 | 0.625 0 | 47.700 0 | 117.701 0 | 8 129.103 6 |
表9 不同方法求解压力容器设计问题结果的比较
Tab. 9 Result comparison of solving pressure vessel design problem by different methods
算法 | 最优变量 | 最优值/kg | |||
---|---|---|---|---|---|
HSSBOA | 0.794 2 | 0.406 3 | 40.895 1 | 177.631 5 | 5 768.695 7 |
GWO | 0.812 5 | 0.434 5 | 42.089 2 | 176.758 7 | 6 051.563 9 |
HHO | 0.817 6 | 0.407 3 | 42.091 7 | 176.719 6 | 6 000.462 6 |
WOA | 0.812 5 | 0.437 5 | 42.098 3 | 176.639 0 | 6 059.741 0 |
拉格朗日乘数 | 1.125 0 | 0.625 0 | 58.291 0 | 43.690 0 | 7 198.042 8 |
分支界 | 1.125 0 | 0.625 0 | 47.700 0 | 117.701 0 | 8 129.103 6 |
1 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks, Volume 4. Piscataway: IEEE, 1995: 1942-1948. 10.1109/icnn.1995.488968 |
2 | DORIGO M, DI CARO G. Ant colony optimization: a new meta-heuristic[C]// Proceedings of the 1999 Congress on Evolutionary Computation, Volume 2. Piscataway: IEEE, 1999: 1470-1477. 10.1109/cec.1999.782657 |
3 | KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471. 10.1007/s10898-007-9149-x |
4 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 10.1016/j.advengsoft.2013.12.007 |
5 | ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734. 10.1007/s00500-018-3102-4 |
6 | ARORA S, ANAND P. Binary butterfly optimization approaches for feature selection[J]. Expert Systems with Applications, 2019, 116: 147-160. 10.1016/j.eswa.2018.08.051 |
7 | ARORA S, SINGH S. An improved butterfly optimization algorithm with chaos[J]. Journal of Intelligent and Fuzzy Systems, 2017, 32(1): 1079-1088. 10.3233/jifs-16798 |
8 | SINGH B, ANAND P. A novel adaptive butterfly optimization algorithm[J]. International Journal of Computational Materials Science and Engineering, 2018, 7(4): No.1850026. |
9 | MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. 10.1016/j.advengsoft.2017.07.002 |
10 | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation jointly with the 2005 International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Volume I. Piscataway: IEEE, 2005: 695-701. 10.1109/cimca.2005.1631428 |
11 | RAHNAMAYAN S, JESUTHASAN J, BOURENNANI F, et al. Computing opposition by involving entire population[C]// Proceedings of the 2014 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2014: 1800-1807. 10.1109/cec.2014.6900329 |
12 | 周凌云,丁立新,彭虎,等. 一种邻域重心反向学习的粒子群优化算法[J]. 电子学报, 2017, 45(11): 2815-2824. 10.3969/j.issn.0372-2112.2017.11.032 |
ZHOU L Y, DING L X, PENG H, et al. Neighborhood centroid opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2017, 45(11): 2815-2824. 10.3969/j.issn.0372-2112.2017.11.032 | |
13 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. 10.1016/j.advengsoft.2016.01.008 |
14 | HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. 10.1016/j.future.2019.02.028 |
15 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. 10.1109/4235.585893 |
16 | 李炳宇,萧蕴诗,汪镭. PSO算法在工程优化问题中的应用[J]. 计算机工程与应用, 2004, 40(18): 74-76. 10.3321/j.issn:1002-8331.2004.18.024 |
LI B Y, XIAO Y S, WANG L. Application of particle swarm optimization algorithm in engineering optimization problem[J]. Computer Engineering and Applications, 2004, 40(18): 74-76. 10.3321/j.issn:1002-8331.2004.18.024 | |
17 | BELEGUNDU A D, ARORA J S. A study of mathematical programming methods for structural optimization. Part I: theory[J]. International Journal for Numerical Methods in Engineering, 1985, 21(9): 1583-1599. 10.1002/nme.1620210904 |
18 | YANG X S. Nature-inspired Metaheuristic Algorithms[M]. 2nd ed. Frome: Luniver Press, 2010: 29-52. |
19 | KANNAN B K, KRAMER S N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design[J]. Journal of Mechanical Design, 1994, 116(2): 405-411. 10.1115/1.2919393 |
20 | SANDGREN E. Nonlinear integer and discrete programming in mechanical design optimization[J]. Journal of Mechanical Design, 1990, 112(2): 223-229. 10.1115/1.2912596 |
[1] | 韦修喜, 彭茂松, 黄华娟. 基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1009-1017. |
[2] | 赵沛雯, 张达敏, 张琳娜, 邹诚诚. 融合黄金正弦算法和纵横交叉策略的秃鹰搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 192-201. |
[3] | 陈亮, 汤显峰. 改进正余弦算法优化特征选择及数据分类[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1852-1861. |
[4] | 段玉先, 刘昌云. 基于Sobol序列和纵横交叉策略的麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 36-43. |
[5] | 陈俊, 何庆. 基于余弦相似度的改进蝴蝶优化算法[J]. 计算机应用, 2021, 41(9): 2668-2677. |
[6] | 李蒙蒙, 秦伟, 刘艺, 刁兴春. 结合头脑风暴优化的混合蚁群优化算法[J]. 计算机应用, 2021, 41(8): 2412-2417. |
[7] | 唐延强, 李成海, 宋亚飞. 基于改进粒子群优化和极限学习机的网络安全态势预测[J]. 计算机应用, 2021, 41(3): 768-773. |
[8] | 金滔, 董秀成, 李亦宁, 任磊, 范佩佩. 改进的粒子群优化算法优化分数阶PID控制器参数[J]. 计算机应用, 2019, 39(3): 796-801. |
[9] | 王庆荣, 王瑞峰. 基于改进粒子群算法的配电网重构策略[J]. 计算机应用, 2018, 38(9): 2720-2724. |
[10] | 艾兵, 董明刚. 基于高斯扰动和自然选择的改进粒子群优化算法[J]. 计算机应用, 2016, 36(3): 687-691. |
[11] | 于泉, 孙顺远, 徐保国, 陈淑娟. 基于改进粒子群算法的无线传感器网络节点定位[J]. 计算机应用, 2015, 35(6): 1519-1522. |
[12] | 陈寿文. 基于质心和自适应指数惯性权重改进的粒子群算法[J]. 计算机应用, 2015, 35(3): 675-679. |
[13] | 柏亮 王雷. 热轧圆钢生产订单接受问题优化模型与算法[J]. 计算机应用, 2014, 34(8): 2419-2423. |
[14] | 马进 谢江 戴东波 谭军 张武. 用于生物分子网络比对的自适应匈牙利贪心混合算法的并行化[J]. 计算机应用, 2013, 33(12): 3321-3325. |
[15] | 赵远东 方正华. 带有权重函数学习因子的粒子群算法[J]. 计算机应用, 2013, 33(08): 2265-2268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||