《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (1): 36-43.DOI: 10.11772/j.issn.1001-9081.2021010187
收稿日期:
2021-02-02
修回日期:
2021-05-05
接受日期:
2021-05-10
发布日期:
2021-05-12
出版日期:
2022-01-10
通讯作者:
段玉先
作者简介:
段玉先(1992—),男,山东威海人,硕士研究生,主要研究方向:智能优化算法、态势感知基金资助:
Yuxian DUAN1,2(), Changyun LIU1
Received:
2021-02-02
Revised:
2021-05-05
Accepted:
2021-05-10
Online:
2021-05-12
Published:
2022-01-10
Contact:
Yuxian DUAN
About author:
DUAN Yuxian, born in 1992, M. S. candidate. His research interests include intelligent optimization algorithms, situation awareness.Supported by:
摘要:
针对麻雀搜索算法(SSA)容易陷入局部最优、收敛速度较慢等问题,提出一种基于Sobol序列和纵横交叉策略的麻雀搜索算法(SSASC)。首先,在初始化阶段引入类随机采样方法中的Sobol序列,以增强种群的多样性和遍历性;其次,提出一种指数形式的非线性惯性权重,从而提高算法的收敛效率;最后,应用纵横交叉策略对算法进行改进,即利用横向交叉增强全局搜索能力,利用纵向交叉保持种群的多样性并防止算法陷入局部最优。选取了13个基准函数进行仿真实验,同时使用Wilcoxon秩和检验和Friedman检验评价算法的性能。在与其他元启发式算法的对比实验中,将基准函数从10维扩展到100维,SSASC在平均值和标准差处始终优于其他算法。实验结果表明,该算法在收敛速度和求解准确度方面均取得了一定的优势。
中图分类号:
段玉先, 刘昌云. 基于Sobol序列和纵横交叉策略的麻雀搜索算法[J]. 计算机应用, 2022, 42(1): 36-43.
Yuxian DUAN, Changyun LIU. Sparrow search algorithm based on Sobol sequence and crisscross strategy[J]. Journal of Computer Applications, 2022, 42(1): 36-43.
算法 | 参数 | 取值 |
---|---|---|
SCA | 2 | |
WOA | (2,0) | |
(2,1) | ||
1 | ||
GWO | (2,0) | |
[0,2]随机值 | ||
SSA | 发现者数量 | 20% |
警戒者数量 | 10% | |
报警阈值 | 0.8 | |
CSSA | 发现者数量 | 20% |
警戒者数量 | 10% | |
报警阈值 | 0.8 |
表1 不同算法的参数设置
Tab. 1 Parameter settings of different algorithms
算法 | 参数 | 取值 |
---|---|---|
SCA | 2 | |
WOA | (2,0) | |
(2,1) | ||
1 | ||
GWO | (2,0) | |
[0,2]随机值 | ||
SSA | 发现者数量 | 20% |
警戒者数量 | 10% | |
报警阈值 | 0.8 | |
CSSA | 发现者数量 | 20% |
警戒者数量 | 10% | |
报警阈值 | 0.8 |
函数 | SCA | GWO | WOA | SSA | CSSA | SSASC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | avg | std | |
4.40E-11 | 1.25E-10 | 8.73E-57 | 3.07E-56 | 5.66E-77 | 2.96E-76 | 1.64E-31 | 8.72E-31 | 3.31E-13 | 1.68E-12 | 0.00E+00 | 0.00E+00 | |
2.06E-03 | 8.10E-03 | 1.05E-24 | 4.59E-24 | 1.37E+02 | 2.04E+02 | 2.00E-30 | 1.10E-29 | 3.08E-13 | 1.13E-12 | 0.00E+00 | 0.00E+00 | |
7.48E+00 | 4.51E-01 | 6.93E+00 | 6.20E-01 | 7.02E+00 | 6.03E-01 | 6.74E-07 | 1.68E-06 | 4.34E-07 | 1.23E-06 | 0.00E+00 | 0.00E+00 | |
2.67E-03 | 2.94E-03 | 9.49E-04 | 7.06E-04 | 2.45E-03 | 3.09E-03 | 3.86E-04 | 3.15E-04 | 2.62E--04 | 1.76E-04 | 0.00E+00 | 0.00E+00 | |
-2.14E+03 | 1.62E+02 | -2.65E+03 | 2.99E+02 | -3.21E+03 | 5.58E+02 | -2.61E+03 | 3.65E+02 | -4.24E+03 | 7.34E+02 | -4.19E+03 | 2.48E-12 | |
2.19E-02 | 1.20E-01 | 7.59E-01 | 1.71E+00 | 2.38E+00 | 9.27E+00 | 0.00E+00 | 0.00E+00 | 5.31E--14 | 1.43E-13 | 0.00E+00 | 0.00E+00 | |
1.97E-04 | 1.08E-03 | 7.52E-15 | 2.03E-15 | 3.73E-15 | 2.54E-15 | 1.95E-15 | 5.84E-15 | 6.84E--08 | 2.62E-07 | 8.88E-16 | 0.00E+00 | |
6.59E-02 | 1.26E-01 | 3.80E-02 | 6.39E-02 | 6.51E-02 | 1.06E-01 | 0.00E+00 | 0.00E+00 | 2.55E-15 | 9.36E-15 | 0.00E+00 | 0.00E+00 | |
1.03E-01 | 3.13E-02 | 5.68E-03 | 1.00E-02 | 1.94E-01 | 9.78E-01 | 8.88E-09 | 1.80E-08 | 2.85E-08 | 8.18E-08 | 4.71E-32 | 1.67E-47 | |
3.39E-01 | 1.23E-01 | 1.67E-02 | 3.80E-02 | 3.72E-02 | 4.70E-02 | 6.79E-08 | 9.85E-08 | 1.58E-07 | 2.02E-07 | 1.35E-32 | 5.57E-48 | |
1.01E-03 | 3.47E-04 | 3.78E-03 | 7.55E-03 | 7.10E-04 | 4.61E-04 | 3.20E-04 | 1.33E--05 | 3.20E-04 | 1.31E-05 | 4.23E-04 | 3.09E-04 | |
-1.03E+00 | 7.12E-05 | -1.03E+00 | 2.61E-08 | -1.03E+00 | 1.88E-09 | -1.03E+00 | 1.97E-14 | -1.03E+00 | 1.87E-14 | -1.03E+00 | 6.78E-16 | |
4.00E-01 | 3.03E-03 | 3.98E-01 | 4.67E-04 | 3.98E-01 | 2.34E-05 | 3.98E-01 | 1.27E-08 | 3.98E-01 | 1.21E-08 | 3.98E-01 | 0.00E+00 |
表2 不同算法比较结果(dim=10)
Tab. 2 Comparison results of different algorithms (dim=10)
函数 | SCA | GWO | WOA | SSA | CSSA | SSASC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | avg | std | |
4.40E-11 | 1.25E-10 | 8.73E-57 | 3.07E-56 | 5.66E-77 | 2.96E-76 | 1.64E-31 | 8.72E-31 | 3.31E-13 | 1.68E-12 | 0.00E+00 | 0.00E+00 | |
2.06E-03 | 8.10E-03 | 1.05E-24 | 4.59E-24 | 1.37E+02 | 2.04E+02 | 2.00E-30 | 1.10E-29 | 3.08E-13 | 1.13E-12 | 0.00E+00 | 0.00E+00 | |
7.48E+00 | 4.51E-01 | 6.93E+00 | 6.20E-01 | 7.02E+00 | 6.03E-01 | 6.74E-07 | 1.68E-06 | 4.34E-07 | 1.23E-06 | 0.00E+00 | 0.00E+00 | |
2.67E-03 | 2.94E-03 | 9.49E-04 | 7.06E-04 | 2.45E-03 | 3.09E-03 | 3.86E-04 | 3.15E-04 | 2.62E--04 | 1.76E-04 | 0.00E+00 | 0.00E+00 | |
-2.14E+03 | 1.62E+02 | -2.65E+03 | 2.99E+02 | -3.21E+03 | 5.58E+02 | -2.61E+03 | 3.65E+02 | -4.24E+03 | 7.34E+02 | -4.19E+03 | 2.48E-12 | |
2.19E-02 | 1.20E-01 | 7.59E-01 | 1.71E+00 | 2.38E+00 | 9.27E+00 | 0.00E+00 | 0.00E+00 | 5.31E--14 | 1.43E-13 | 0.00E+00 | 0.00E+00 | |
1.97E-04 | 1.08E-03 | 7.52E-15 | 2.03E-15 | 3.73E-15 | 2.54E-15 | 1.95E-15 | 5.84E-15 | 6.84E--08 | 2.62E-07 | 8.88E-16 | 0.00E+00 | |
6.59E-02 | 1.26E-01 | 3.80E-02 | 6.39E-02 | 6.51E-02 | 1.06E-01 | 0.00E+00 | 0.00E+00 | 2.55E-15 | 9.36E-15 | 0.00E+00 | 0.00E+00 | |
1.03E-01 | 3.13E-02 | 5.68E-03 | 1.00E-02 | 1.94E-01 | 9.78E-01 | 8.88E-09 | 1.80E-08 | 2.85E-08 | 8.18E-08 | 4.71E-32 | 1.67E-47 | |
3.39E-01 | 1.23E-01 | 1.67E-02 | 3.80E-02 | 3.72E-02 | 4.70E-02 | 6.79E-08 | 9.85E-08 | 1.58E-07 | 2.02E-07 | 1.35E-32 | 5.57E-48 | |
1.01E-03 | 3.47E-04 | 3.78E-03 | 7.55E-03 | 7.10E-04 | 4.61E-04 | 3.20E-04 | 1.33E--05 | 3.20E-04 | 1.31E-05 | 4.23E-04 | 3.09E-04 | |
-1.03E+00 | 7.12E-05 | -1.03E+00 | 2.61E-08 | -1.03E+00 | 1.88E-09 | -1.03E+00 | 1.97E-14 | -1.03E+00 | 1.87E-14 | -1.03E+00 | 6.78E-16 | |
4.00E-01 | 3.03E-03 | 3.98E-01 | 4.67E-04 | 3.98E-01 | 2.34E-05 | 3.98E-01 | 1.27E-08 | 3.98E-01 | 1.21E-08 | 3.98E-01 | 0.00E+00 |
函数 | SCA | GWO | WOA | SSA | CSSA | SSASC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | avg | std | |
1.49E+01 | 2.28E+01 | 1.47E-27 | 3.24E-27 | 7.11E-71 | 3.89E-70 | 4.99E-34 | 2.66E-33 | 3.43E-14 | 1.22E-13 | 0.00E+00 | 0.00E+00 | |
9.74E+03 | 6.63E+03 | 1.52E-05 | 3.38E-05 | 4.19E+04 | 1.28E+04 | 9.76E-34 | 5.35E-33 | 6.61E-11 | 3.59E-10 | 0.00E+00 | 0.00E+00 | |
1.35E+05 | 5.57E+05 | 2.74E+01 | 8.10E-01 | 2.80E+01 | 5.25E-01 | 1.33E-05 | 2.90E-05 | 1.79E-05 | 2.71E-05 | 3.13E-06 | 8.41E-06 | |
1.08E-01 | 1.04E-01 | 1.80E-03 | 7.38E-04 | 3.38E-03 | 3.35E-03 | 3.83E-04 | 3.31E-04 | 2.39E-04 | 1.47E-04 | 8.09E-05 | 5.95E-05 | |
-3.69E+03 | 2.06E+02 | -5.69E+03 | 9.91E+02 | -1.03E+04 | 1.80E+03 | -5.41E+03 | 5.00E+02 | -8.74E+03 | 2.23E+03 | -1.26E+04 | 3.40E-10 | |
4.34E+01 | 3.16E+01 | 3.44E+00 | 4.14E+00 | 1.89E-15 | 1.04E-14 | 0.00E+00 | 0.00E+00 | 9.09E-14 | 4.88E-13 | 0.00E+00 | 0.00E+00 | |
1.32E+01 | 8.72E+00 | 9.88E-14 | 1.71E-14 | 5.15E-15 | 2.17E-15 | 1.01E-15 | 6.49E-16 | 4.45E-08 | 2.43E-07 | 8.88E-16 | 0.00E+00 | |
9.98E-01 | 6.86E-01 | 4.07E-03 | 7.84E-03 | 3.70E-18 | 2.03E-17 | 0.00E+00 | 0.00E+00 | 5.07E-16 | 2.38E-15 | 0.00E+00 | 0.00E+00 | |
3.36E+04 | 1.44E+05 | 4.68E-02 | 2.47E-02 | 2.70E-02 | 2.61E-02 | 1.23E-08 | 2.61E-08 | 1.61E-08 | 3.41E-08 | 2.35E-20 | 4.69E-20 | |
2.97E+04 | 1.01E+05 | 6.36E-01 | 3.09E-01 | 5.12E-01 | 2.14E-01 | 2.16E-07 | 3.57E-07 | 3.67E-07 | 7.52E-07 | 1.21E-19 | 3.25E-19 |
表3 不同算法比较结果(dim=30)
Tab. 3 Comparison results of different algorithms (dim=30)
函数 | SCA | GWO | WOA | SSA | CSSA | SSASC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | avg | std | |
1.49E+01 | 2.28E+01 | 1.47E-27 | 3.24E-27 | 7.11E-71 | 3.89E-70 | 4.99E-34 | 2.66E-33 | 3.43E-14 | 1.22E-13 | 0.00E+00 | 0.00E+00 | |
9.74E+03 | 6.63E+03 | 1.52E-05 | 3.38E-05 | 4.19E+04 | 1.28E+04 | 9.76E-34 | 5.35E-33 | 6.61E-11 | 3.59E-10 | 0.00E+00 | 0.00E+00 | |
1.35E+05 | 5.57E+05 | 2.74E+01 | 8.10E-01 | 2.80E+01 | 5.25E-01 | 1.33E-05 | 2.90E-05 | 1.79E-05 | 2.71E-05 | 3.13E-06 | 8.41E-06 | |
1.08E-01 | 1.04E-01 | 1.80E-03 | 7.38E-04 | 3.38E-03 | 3.35E-03 | 3.83E-04 | 3.31E-04 | 2.39E-04 | 1.47E-04 | 8.09E-05 | 5.95E-05 | |
-3.69E+03 | 2.06E+02 | -5.69E+03 | 9.91E+02 | -1.03E+04 | 1.80E+03 | -5.41E+03 | 5.00E+02 | -8.74E+03 | 2.23E+03 | -1.26E+04 | 3.40E-10 | |
4.34E+01 | 3.16E+01 | 3.44E+00 | 4.14E+00 | 1.89E-15 | 1.04E-14 | 0.00E+00 | 0.00E+00 | 9.09E-14 | 4.88E-13 | 0.00E+00 | 0.00E+00 | |
1.32E+01 | 8.72E+00 | 9.88E-14 | 1.71E-14 | 5.15E-15 | 2.17E-15 | 1.01E-15 | 6.49E-16 | 4.45E-08 | 2.43E-07 | 8.88E-16 | 0.00E+00 | |
9.98E-01 | 6.86E-01 | 4.07E-03 | 7.84E-03 | 3.70E-18 | 2.03E-17 | 0.00E+00 | 0.00E+00 | 5.07E-16 | 2.38E-15 | 0.00E+00 | 0.00E+00 | |
3.36E+04 | 1.44E+05 | 4.68E-02 | 2.47E-02 | 2.70E-02 | 2.61E-02 | 1.23E-08 | 2.61E-08 | 1.61E-08 | 3.41E-08 | 2.35E-20 | 4.69E-20 | |
2.97E+04 | 1.01E+05 | 6.36E-01 | 3.09E-01 | 5.12E-01 | 2.14E-01 | 2.16E-07 | 3.57E-07 | 3.67E-07 | 7.52E-07 | 1.21E-19 | 3.25E-19 |
函数 | SCA | GWO | WOA | SSA | CSSA | SSASC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | avg | std | |
1.21E+04 | 1.04E+04 | 1.33E-12 | 1.03E-12 | 4.75E-72 | 2.48E-71 | 2.72E-41 | 1.49E-40 | 4.18E-14 | 1.46E-13 | 0.00E+00 | 0.00E+00 | |
2.58E+05 | 4.83E+04 | 7.20E+02 | 6.76E+02 | 1.11E+06 | 2.35E+05 | 9.58E-37 | 5.25E-36 | 4.09E-12 | 1.81E-11 | 0.00E+00 | 0.00E+00 | |
1.23E+08 | 4.98E+07 | 9.80E+01 | 5.76E-01 | 9.82E+01 | 2.15E-01 | 4.38E-04 | 1.27E-03 | 1.38E-04 | 2.11E-04 | 7.07E-05 | 1.14E-04 | |
1.45E+02 | 7.39E+01 | 7.33E-03 | 2.80E-03 | 2.94E-03 | 2.94E-03 | 3.78E-04 | 2.63E-04 | 2.44E-04 | 2.19E-04 | 3.66E-05 | 4.26E-05 | |
-6.98E+03 | 5.51E+02 | -1.62E+04 | 1.30E+03 | -3.57E+04 | 5.81E+03 | -1.02E+04 | 2.26E+03 | -3.25E+04 | 7.60E+03 | -4.06E+04 | 2.99E+03 | |
2.66E+02 | 1.09E+02 | 9.47E+00 | 7.31E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 7.58E-15 | 2.88E-14 | 0.00E+00 | 0.00E+00 | |
1.90E+01 | 4.16E+00 | 1.08E-07 | 4.26E-08 | 4.91E-15 | 1.80E-15 | 8.88E-16 | 0.00E+00 | 4.89E-11 | 1.31E-10 | 8.88E-16 | 0.00E+00 | |
1.07E+02 | 5.20E+01 | 2.49E-03 | 7.97E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.99E-14 | 1.06E-13 | 0.00E+00 | 0.00E+00 | |
2.91E+08 | 1.48E+08 | 2.88E-01 | 8.75E-02 | 5.72E-02 | 3.98E-02 | 1.75E-08 | 2.75E-08 | 4.91E-09 | 1.76E-08 | 1.54E-11 | 3.36E-11 | |
5.88E+08 | 2.81E+08 | 6.85E+00 | 4.76E-01 | 2.93E+00 | 1.17E+00 | 7.35E-07 | 1.73E-06 | 3.41E-07 | 6.37E-07 | 1.40E-09 | 3.37E-09 |
表4 不同算法比较结果(dim=100)
Tab. 4 Comparison results of different algorithms (dim=100)
函数 | SCA | GWO | WOA | SSA | CSSA | SSASC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | avg | std | |
1.21E+04 | 1.04E+04 | 1.33E-12 | 1.03E-12 | 4.75E-72 | 2.48E-71 | 2.72E-41 | 1.49E-40 | 4.18E-14 | 1.46E-13 | 0.00E+00 | 0.00E+00 | |
2.58E+05 | 4.83E+04 | 7.20E+02 | 6.76E+02 | 1.11E+06 | 2.35E+05 | 9.58E-37 | 5.25E-36 | 4.09E-12 | 1.81E-11 | 0.00E+00 | 0.00E+00 | |
1.23E+08 | 4.98E+07 | 9.80E+01 | 5.76E-01 | 9.82E+01 | 2.15E-01 | 4.38E-04 | 1.27E-03 | 1.38E-04 | 2.11E-04 | 7.07E-05 | 1.14E-04 | |
1.45E+02 | 7.39E+01 | 7.33E-03 | 2.80E-03 | 2.94E-03 | 2.94E-03 | 3.78E-04 | 2.63E-04 | 2.44E-04 | 2.19E-04 | 3.66E-05 | 4.26E-05 | |
-6.98E+03 | 5.51E+02 | -1.62E+04 | 1.30E+03 | -3.57E+04 | 5.81E+03 | -1.02E+04 | 2.26E+03 | -3.25E+04 | 7.60E+03 | -4.06E+04 | 2.99E+03 | |
2.66E+02 | 1.09E+02 | 9.47E+00 | 7.31E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 7.58E-15 | 2.88E-14 | 0.00E+00 | 0.00E+00 | |
1.90E+01 | 4.16E+00 | 1.08E-07 | 4.26E-08 | 4.91E-15 | 1.80E-15 | 8.88E-16 | 0.00E+00 | 4.89E-11 | 1.31E-10 | 8.88E-16 | 0.00E+00 | |
1.07E+02 | 5.20E+01 | 2.49E-03 | 7.97E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.99E-14 | 1.06E-13 | 0.00E+00 | 0.00E+00 | |
2.91E+08 | 1.48E+08 | 2.88E-01 | 8.75E-02 | 5.72E-02 | 3.98E-02 | 1.75E-08 | 2.75E-08 | 4.91E-09 | 1.76E-08 | 1.54E-11 | 3.36E-11 | |
5.88E+08 | 2.81E+08 | 6.85E+00 | 4.76E-01 | 2.93E+00 | 1.17E+00 | 7.35E-07 | 1.73E-06 | 3.41E-07 | 6.37E-07 | 1.40E-09 | 3.37E-09 |
函数 | |||||
---|---|---|---|---|---|
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 5.77E-11 | 4.57E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.25E-11 | 1.25E-11 | 1.25E-11 | 1.25E-11 | 3.70E-01 | |
5.76E-11 | 1.10E-02 | 2.16E-02 | N/A | 4.19E-02 | |
1.21E-12 | 2.01E-13 | 2.65E-07 | 3.34E-01 | 1.31E-07 | |
1.21E-12 | 1.95E-09 | 3.13E-04 | N/A | 4.19E-02 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
7.12E-09 | 5.32E-03 | 4.74E-06 | 9.71E-01 | 6.63E-01 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.77E-12 | 1.28E-08 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 2.79E-03 | 1.61E-01 |
表5 十三个基准函数上的Wilcoxon秩和测试的p值
Tab. 5 p values of Wilcoxon rank sum test on 13 benchmark functions
函数 | |||||
---|---|---|---|---|---|
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 5.77E-11 | 4.57E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.25E-11 | 1.25E-11 | 1.25E-11 | 1.25E-11 | 3.70E-01 | |
5.76E-11 | 1.10E-02 | 2.16E-02 | N/A | 4.19E-02 | |
1.21E-12 | 2.01E-13 | 2.65E-07 | 3.34E-01 | 1.31E-07 | |
1.21E-12 | 1.95E-09 | 3.13E-04 | N/A | 4.19E-02 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | |
7.12E-09 | 5.32E-03 | 4.74E-06 | 9.71E-01 | 6.63E-01 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.77E-12 | 1.28E-08 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 2.79E-03 | 1.61E-01 |
算法 | dim=10 | dim=30 | dim=100 | |||
---|---|---|---|---|---|---|
平均排名 | 排名 | 平均排名 | 排名 | 平均排名 | 排名 | |
SCA | 5.615 4 | 6 | 5.412 9 | 6 | 5.841 3 | 6 |
GWO | 4.230 8 | 4 | 4.751 3 | 5 | 4.451 5 | 5 |
WOA | 4.461 5 | 5 | 3.586 2 | 4 | 3.752 4 | 4 |
SSA | 2.461 5 | 2 | 2.618 4 | 2 | 2.551 6 | 2 |
CSSA | 2.769 2 | 3 | 3.239 8 | 3 | 2.812 1 | 3 |
SSASC | 1.230 8 | 1 | 1.117 5 | 1 | 1.351 2 | 1 |
表6 十个基准函数上的Friedman检验结果
Tab. 6 Friedman test results on 10 benchmark functions
算法 | dim=10 | dim=30 | dim=100 | |||
---|---|---|---|---|---|---|
平均排名 | 排名 | 平均排名 | 排名 | 平均排名 | 排名 | |
SCA | 5.615 4 | 6 | 5.412 9 | 6 | 5.841 3 | 6 |
GWO | 4.230 8 | 4 | 4.751 3 | 5 | 4.451 5 | 5 |
WOA | 4.461 5 | 5 | 3.586 2 | 4 | 3.752 4 | 4 |
SSA | 2.461 5 | 2 | 2.618 4 | 2 | 2.551 6 | 2 |
CSSA | 2.769 2 | 3 | 3.239 8 | 3 | 2.812 1 | 3 |
SSASC | 1.230 8 | 1 | 1.117 5 | 1 | 1.351 2 | 1 |
1 | YANG X S. Nature-inspired optimization algorithms: challenges and open problems[J]. Journal of Computational Science, 2020, 46: No.101104. 10.1016/j.jocs.2020.101104 |
2 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. 10.1016/j.advengsoft.2016.01.008 |
3 | KIRKPATRICK S, GELATT C D, Jr., VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598):671-680. 10.1126/science.220.4598.671 |
4 | TSAI H C. A corrected and improved symbiotic organisms search algorithm for continuous optimization[J]. Expert Systems with Applications, 2021, 177: No.114981. 10.1016/j.eswa.2021.114981 |
5 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. 10.1109/icnn.1995.488968 |
6 | DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39. 10.1109/ci-m.2006.248054 |
7 | GOLBERG D E. Genetic Algorithms in Search, Optimization, and Machine Learning [M]. Boston: Addison-Wesley, 1989: 36. |
8 | MIRJALILI S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053-1073. 10.1007/s00521-015-1920-1 |
9 | HUSSAIN K, MOHD SALLEH M N, CHENG S, et al. Metaheuristic research: a comprehensive survey[J]. Artificial Intelligence Review, 2019, 52(4): 2191-2233. 10.1007/s10462-017-9605-z |
10 | XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8(1): 22-34. 10.1080/21642583.2019.1708830 |
11 | DOKEROGLU T, SEVINC E, KUCUKYILMAZ T, et al. A survey on new generation metaheuristic algorithms[J]. Computers and Industrial Engineering, 2019, 137: No.106040. 10.1016/j.cie.2019.106040 |
12 | MIRJALILI S, GANDOMI A H. Chaotic gravitational constant for the gravitational search algorithm[J]. Applied Soft Computing, 2017, 53: 407-419. 10.1016/j.asoc.2017.01.008 |
13 | TIAN D P. Particle swarm optimization with chaos-based initialization for numerical optimization[J]. Intelligent Automation and Soft Computing, 2018, 24(2): 331-342. 10.1080/10798587.2017.1293881 |
14 | ARORA S, ANAND P. Chaotic grasshopper optimization algorithm for global optimization[J]. Neural Computing and Applications, 2019, 31(8): 4385-4405. 10.1007/s00521-018-3343-2 |
15 | ZHANG M J, LONG D Y, QIN T, et al. A chaotic hybrid butterfly optimization algorithm with particle swarm optimization for high-dimensional optimization problems[J]. Symmetry, 2020, 12(11): No.1800. 10.3390/sym12111800 |
16 | MIRJALILI S, LEWIS A. Adaptive gbest-guided gravitational search algorithm[J]. Neural Computing and Applications, 2014, 25(7/8): 1569-1584. 10.1007/s00521-014-1640-y |
17 | HUANG H Z, CHUNG C Y, CHAN K W, et al. Quasi-Monte Carlo based probabilistic small signal stability analysis for power systems with plug-in electric vehicle and wind power integration[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3335-3343. 10.1109/tpwrs.2013.2254505 |
18 | JOE S, KUO F Y. Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator[J]. ACM Transactions on Mathematical Software, 2003, 29(1): 49-57. 10.1145/641876.641879 |
19 | MENG A B, CHEN Y C, YIN H, et al. Crisscross optimization algorithm and its application[J]. Knowledge-Based Systems, 2014, 67: 218-229. 10.1016/j.knosys.2014.05.004 |
20 | MIRJALILI S. SCA: a Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. 10.1016/j.knosys.2015.12.022 |
21 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 10.1016/j.advengsoft.2013.12.007 |
22 | 吕鑫,慕晓冬,张钧,等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8):1712-1720. |
LYU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8):1712-1720. | |
23 | GARCÍA S, MOLINA D, LOZANO M, et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization[J]. Journal of Heuristics, 2009, 15(6): No.617. 10.1007/s10732-008-9080-4 |
24 | DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. 10.1016/j.swevo.2011.02.002 |
25 | WILCOXON F. Individual comparisons by ranking methods[M]// KOTZ S, JOHNSON N L. Breakthroughs in Statistics Volume Ⅱ: Methodology and Distribution, SSS. New York: Springer, 1992: 196-202. 10.1007/978-1-4612-4380-9_16 |
26 | MEDDIS R. Unified analysis of variance by ranks[J]. British Journal of Mathematical and Statistical Psychology, 1980, 33(1): 84-98. 10.1111/j.2044-8317.1980.tb00779.x |
[1] | 陈俊, 何庆. 基于余弦相似度的改进蝴蝶优化算法[J]. 计算机应用, 2021, 41(9): 2668-2677. |
[2] | 汤安迪, 韩统, 徐登武, 谢磊. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021, 41(7): 2128-2136. |
[3] | 唐延强, 李成海, 宋亚飞. 基于改进粒子群优化和极限学习机的网络安全态势预测[J]. 计算机应用, 2021, 41(3): 768-773. |
[4] | 金滔, 董秀成, 李亦宁, 任磊, 范佩佩. 改进的粒子群优化算法优化分数阶PID控制器参数[J]. 计算机应用, 2019, 39(3): 796-801. |
[5] | 王庆荣, 王瑞峰. 基于改进粒子群算法的配电网重构策略[J]. 计算机应用, 2018, 38(9): 2720-2724. |
[6] | 张鑫, 邹德旋, 沈鑫. 含交叉项的混合二范数粒子群优化算法[J]. 计算机应用, 2018, 38(8): 2148-2156. |
[7] | 韩雪, 程奇峰, 赵婷婷, 张利民. 基于粒子滤波重采样与变异操作的改进粒子群算法[J]. 计算机应用, 2016, 36(4): 1008-1014. |
[8] | 艾兵, 董明刚. 基于高斯扰动和自然选择的改进粒子群优化算法[J]. 计算机应用, 2016, 36(3): 687-691. |
[9] | 于泉, 孙顺远, 徐保国, 陈淑娟. 基于改进粒子群算法的无线传感器网络节点定位[J]. 计算机应用, 2015, 35(6): 1519-1522. |
[10] | 陈寿文. 基于质心和自适应指数惯性权重改进的粒子群算法[J]. 计算机应用, 2015, 35(3): 675-679. |
[11] | 赵远东 方正华. 带有权重函数学习因子的粒子群算法[J]. 计算机应用, 2013, 33(08): 2265-2268. |
[12] | 耿焕同 高军 贾婷婷 吴正雪. 均衡分布性和收敛性的多目标粒子群优化方法[J]. 计算机应用, 2013, 33(07): 1926-1929. |
[13] | 张敏 黄强 许周钊 姜柏庄. 基于余弦函数改进的PSO算法及其仿真[J]. 计算机应用, 2013, 33(02): 319-322. |
[14] | 郜振华 梅莉 祝远鉴. 复合策略惯性权重的粒子群优化算法[J]. 计算机应用, 2012, 32(08): 2216-2218. |
[15] | 胡珂 李迅波 王振林. 改进的人工蜂群算法性能[J]. 计算机应用, 2011, 31(04): 1107-1110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||