| 1 | ZAMANZADEH DARBAN Z, VALIPOUR M H. GHRS: graph-based hybrid recommendation system with application to movie recommendation[J]. Expert Systems with Applications, 2022, 200: No.116850.  10.1016/j.eswa.2022.116850 | 
																													
																						| 2 | 鲍维克,袁春.面向推荐系统的分期序列自注意力网络[J].智能系统学报, 2021, 16(2): 353-361.  10.11992/tis.202005028 | 
																													
																						|  | BAO W K, YUAN C. Recommendation system with long-term and short-term sequential self-attention network[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 353-361.  10.11992/tis.202005028 | 
																													
																						| 3 | COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations [C]// Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 191-198.  10.1145/2959100.2959190 | 
																													
																						| 4 | JAIS I K M, ISMAIL A R, NISA S Q. Adam optimization algorithm for wide and deep neural network[J]. Knowledge Engineering and Data Science, 2019, 2(1): 41-46.  10.17977/um018v2i12019p41-46 | 
																													
																						| 5 | TIAN X D, WANG J M, WEN Y, et al. Multi-attribute scientific documents retrieval and ranking model based on GBDT and LR[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3748-3766.  10.3934/mbe.2022172 | 
																													
																						| 6 | CHEN L, LIU Y, ZHENG Z B, et al. Heterogeneous neural attentive factorization machine for rating prediction [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 833-842.  10.1145/3269206.3271759 | 
																													
																						| 7 | RENDLE S. Factorization machines [C]// Proceedings of the 2010 IEEE International Conference on Data Mining. Piscataway: IEEE, 2010: 995-1000.  10.1109/icdm.2010.127 | 
																													
																						| 8 | KANG G S, LIU J X, XIAO Y, et al. Neural and attentional factorization machine-based Web API recommendation for mashup development[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4183-4196.  10.1109/tnsm.2021.3125028 | 
																													
																						| 9 | ZHOU F, ZHOU H M, YANG Z H, et al. EMD2FNN: a strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction[J]. Expert Systems with Applications, 2019, 115: 136-151.  10.1016/j.eswa.2018.07.065 | 
																													
																						| 10 | QU Y R, CAI H, REN K, et al. Product-based neural networks for user response prediction [C]// Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 1149-1154.  10.1109/icdm.2016.0151 | 
																													
																						| 11 | HE X N, CHUA T S. Neural factorization machines for sparse predictive analytics [C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 355-364.  10.1145/3077136.3080777 | 
																													
																						| 12 | LIAN J X, ZHOU X H, ZHANG F Z, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1754-1763.  10.1145/3219819.3220023 | 
																													
																						| 13 | YU Z C, AMIN S U, ALHUSSEIN M, et al. Research on disease prediction based on improved DeepFM and IoMT[J]. IEEE Access, 2021, 9: 39043-39054.  10.1109/access.2021.3062687 | 
																													
																						| 14 | SHAN Y, HOENS T R, JIAO J, et al. Deep crossing: web-scale modeling without manually crafted combinatorial features [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 255-262.  10.1145/2939672.2939704 | 
																													
																						| 15 | ZHAI S F, CHANG K H, ZHANG R F, et al. DeepIntent: learning attentions for online advertising with recurrent neural networks [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1295-1304.  10.1145/2939672.2939759 | 
																													
																						| 16 | 罗洋,夏鸿斌,刘渊.融合注意力LSTM的协同过滤推荐算法[J].中文信息学报, 2019, 33(12): 110-118.  10.3969/j.issn.1003-0077.2019.12.014 | 
																													
																						|  | LUO Y, XIA H B, LIU Y. Collaborative filtering based on attention LSTM[J]. Journal of Chinese Information Processing, 2019, 33(12): 110-118.  10.3969/j.issn.1003-0077.2019.12.014 | 
																													
																						| 17 | HUI B, ZHANG L Z, ZHOU X, et al. Personalized recommendation system based on knowledge embedding and historical behavior[J]. Applied Intelligence, 2022, 52(1): 954-966.  10.1007/s10489-021-02363-w | 
																													
																						| 18 | POPOV A, IAKOVLEVA D. Adaptive look-alike targeting in social networks advertising[J]. Procedia Computer Science, 2018, 136: 255-264.  10.1016/j.procs.2018.08.264 | 
																													
																						| 19 | GAO Z J, FENG A, SONG X Y, et al. Target-dependent sentiment classification with BERT[J]. IEEE Access, 2019, 7: 154290-154299.  10.1109/access.2019.2946594 | 
																													
																						| 20 | 孟开元,岳宇航,曹庆年.新闻推荐系统研究综述[J].软件导刊, 2021, 20(1): 249-252.  10.11907/rjdk.201896 | 
																													
																						|  | MENG K Y, YUE Y H, CAO Q N. Research review of news recommendation system[J]. Software Guide, 2021, 20(1): 249-252.  10.11907/rjdk.201896 | 
																													
																						| 21 | ACHEAMPONG F A, NUNOO-MENSAH H, CHEN W Y. Transformer models for text-based emotion detection: a review of BERT-based approaches[J]. Artificial Intelligence Review, 2021, 54(8): 5789-5829.  10.1007/s10462-021-09958-2 | 
																													
																						| 22 | TOMAZ NEVES P L, FORNARI J, BATISTA FLORINDO J. Self-attention generative adversarial networks applied to conditional music generation[J]. Multimedia Tools and Applications, 2022, 81(17): 24419-24430.  10.1007/s11042-022-12116-7 | 
																													
																						| 23 | EMMANUEL T, MAUPONG T, MPOELENG D, et al. A survey on missing data in machine learning[J]. Journal of Big Data, 2021, 8: No.140.  10.1186/s40537-021-00516-9 | 
																													
																						| 24 | SUN Y N, YIN K, LIU H H, et al. Meta-learned specific scenario interest network for user preference prediction [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1970-1974.  10.1145/3404835.3463077 |