《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (7): 2140-2146.DOI: 10.11772/j.issn.1001-9081.2022060867
所属专题: 人工智能
收稿日期:
2022-06-16
修回日期:
2022-09-24
接受日期:
2022-09-26
发布日期:
2022-10-08
出版日期:
2023-07-10
通讯作者:
程世娟
作者简介:
王思蕊(1998—),女,四川绵阳人,硕士研究生,主要研究方向:可靠性理论与工程、信息融合;基金资助:
Sirui WANG, Shijuan CHENG(), Feimeng YUAN
Received:
2022-06-16
Revised:
2022-09-24
Accepted:
2022-09-26
Online:
2022-10-08
Published:
2023-07-10
Contact:
Shijuan CHENG
About author:
WANG Sirui, born in 1998, M. S. candidate. Her research interests include reliability theory and engineering, information fusion.Supported by:
摘要:
对许多高可靠、高价值的产品进行可靠性评估时,常由于客观试验数据缺乏导致无法对产品可靠性进行准确评估。针对这个问题,为充分利用不同来源的可靠性信息,提出一种基于改进证据融合的高可靠产品可靠性评估方法。首先,结合可靠性工程特点,分别由各证据在信度层、决策层的一致性以及证据自身的不确定度来确定证据修正权重;其次,基于博弈论原理对各权重向量进行线性组合,从而得到最优综合权重;最后,利用Dempster组合规则融合修正后的证据,并通过Pignistic概率转化公式得到产品可靠性指标的概率分布,以完成产品可靠性评估。某电子设备的可靠度评估结果显示,所提方法相较于同样考虑多维权重修正的Jiang组合方法和Yang组合方法,赋予冲突区间的信度分别减小了69.6%、54.6%,赋予整个识别框架的信度分别减小了5.6%、3.7%。因此,在可靠性工程应用中,所提方法化解证据冲突、降低融合结果不确定性的表现优于对比方法,能够有效融合多源可靠性信息,提高产品可靠性评估结果可信度。
中图分类号:
王思蕊, 程世娟, 袁非梦. 基于改进证据融合的高可靠产品可靠性评估方法[J]. 计算机应用, 2023, 43(7): 2140-2146.
Sirui WANG, Shijuan CHENG, Feimeng YUAN. Reliability evaluation method of high-reliability products based on improved evidence fusion[J]. Journal of Computer Applications, 2023, 43(7): 2140-2146.
1.914 1 | 0.978 4 | 0.265 6 | ||
2.528 0 | 0.740 8 | 0.201 1 | ||
1.872 8 | 1.000 0 | 0.271 4 | ||
1.941 3 | 0.964 7 | 0.261 9 |
表1 基于信度层证据一致性确定的相似性权重
Tab. 1 Similarity weights defined based on consistency of evidence at credal level
1.914 1 | 0.978 4 | 0.265 6 | ||
2.528 0 | 0.740 8 | 0.201 1 | ||
1.872 8 | 1.000 0 | 0.271 4 | ||
1.941 3 | 0.964 7 | 0.261 9 |
1.561 7 | 0.357 3 | ||
0.074 0 | 0.016 9 | ||
1.567 4 | 0.357 4 | ||
1.177 3 | 0.268 4 |
表2 基于决策层证据一致性确定的相似性权重
Tab. 2 Similarity weights defined based on consistency of evidence at pignistic level
1.561 7 | 0.357 3 | ||
0.074 0 | 0.016 9 | ||
1.567 4 | 0.357 4 | ||
1.177 3 | 0.268 4 |
1.537 8 | 0.288 5 | 1.250 9 | 0.354 7 | ||
2.875 0 | 0.154 3 | 2.191 8 | 0.202 4 |
表3 基于证据不确定度确定的可靠性权重
Tab. 3 Reliability weights defined based on evidence uncertainty
1.537 8 | 0.288 5 | 1.250 9 | 0.354 7 | ||
2.875 0 | 0.154 3 | 2.191 8 | 0.202 4 |
方法 | 各命题BPA | |||||
---|---|---|---|---|---|---|
m( | m( | m( | m( | m( | m( | |
传统D-S方法 | 0.076 9 | 0.028 9 | 0.124 9 | 0.041 7 | 0.717 8 | 0.009 8 |
基于信度层证据一致性修正 | 0.097 7 | 0.123 5 | 0.031 6 | 0.114 7 | 0.183 8 | 0.448 7 |
基于决策层证据一致性修正 | 0.006 3 | 0.166 9 | 0.061 1 | 0.149 6 | 0.207 5 | 0.408 6 |
基于证据不确定度修正 | 0.070 0 | 0.134 9 | 0.048 8 | 0.159 5 | 0.146 4 | 0.440 4 |
文献[ | 0.090 4 | 0.127 6 | 0.033 3 | 0.116 7 | 0.185 0 | 0.447 0 |
文献[ | 0.060 6 | 0.132 2 | 0.042 8 | 0.142 0 | 0.184 1 | 0.438 3 |
本文方法 | 0.027 5 | 0.155 5 | 0.055 8 | 0.151 3 | 0.187 8 | 0.422 1 |
表4 不同方法融合后的BPA
Tab. 4 BPA after fusing by different methods
方法 | 各命题BPA | |||||
---|---|---|---|---|---|---|
m( | m( | m( | m( | m( | m( | |
传统D-S方法 | 0.076 9 | 0.028 9 | 0.124 9 | 0.041 7 | 0.717 8 | 0.009 8 |
基于信度层证据一致性修正 | 0.097 7 | 0.123 5 | 0.031 6 | 0.114 7 | 0.183 8 | 0.448 7 |
基于决策层证据一致性修正 | 0.006 3 | 0.166 9 | 0.061 1 | 0.149 6 | 0.207 5 | 0.408 6 |
基于证据不确定度修正 | 0.070 0 | 0.134 9 | 0.048 8 | 0.159 5 | 0.146 4 | 0.440 4 |
文献[ | 0.090 4 | 0.127 6 | 0.033 3 | 0.116 7 | 0.185 0 | 0.447 0 |
文献[ | 0.060 6 | 0.132 2 | 0.042 8 | 0.142 0 | 0.184 1 | 0.438 3 |
本文方法 | 0.027 5 | 0.155 5 | 0.055 8 | 0.151 3 | 0.187 8 | 0.422 1 |
1 | 王博,蒋平,郭波.基于多源信息融合的航天阀门可靠性评估[J].兵工学报, 2022, 43(1): 199-206. 10.3969/j.issn.1000-1093.2022.01.022 |
WANG B, JIANG P, GUO B. Reliability evaluation of aerospace valves based on multi-source information fusion[J]. Acta Armamentarii, 2022, 43(1): 199-206. 10.3969/j.issn.1000-1093.2022.01.022 | |
2 | 唐莉,唐家银,程世娟.多源异构数据贝叶斯统计融合可靠性评估模型[J].机械强度, 2022, 44(1): 126-132. 10.16579/j.issn.1001.9669.2022.01.017 |
TANG L, TANG J Y, CHENG S J. Bayesian statistical fusion reliability evaluation model of multi-source heterogeneous data[J]. Journal of Mechanical Strength, 2022, 44(1): 126-132. 10.16579/j.issn.1001.9669.2022.01.017 | |
3 | 邵松世,刘海涛,张志华.融合多源先验信息的舰船备件可靠性评估[J].系统工程与电子技术, 2019, 41(12): 2905-2910. 10.3969/j.issn.1001 |
SHAO S S, LIU H T, ZHANG Z H. Reliability estimation for warship spares by fusing multi-source prior information[J]. Systems Engineering and Electronics, 2019, 41(12): 2905-2910. 10.3969/j.issn.1001 | |
4 | 郭宇,李海阳,周伟勇,等.基于证据融合的固体发动机贮存寿命评估方法[J].固体火箭技术, 2021, 44(4): 448-453. 10.7673/j.issn.1006 |
GUO Y, LI H Y, ZHOU W Y, et al. Evaluation methods for storage life of solid rocket motor based on evidence fusion[J]. Journal of Solid Rocket Technology, 2021, 44(4): 448-453. 10.7673/j.issn.1006 | |
5 | 刘佳俊,胡昌华,周志杰,等.基于证据推理和置信规则库的装备寿命评估[J].控制理论与应用, 2015, 32(2): 231-238. 10.7641/CTA.2015.40406 |
LIU J J, HU C H, ZHOU Z J, et al. Life assessment approach of equipment based on belief-rule-base and evidential reasoning[J]. Control Theory and Applications, 2015, 32(2): 231-238. 10.7641/CTA.2015.40406 | |
6 | 丁瑞,陆宁云,程月华,等.基于D-S证据理论的航天设备寿命预测方法[J].中国空间科学技术, 2016, 36(4): 58-66. |
DING R, LU N Y, CHENG Y H, et al. Lifetime prediction of aerospace equipment based on D-S evidence theory[J]. Chinese Space Science and Technology, 2016, 36(4): 58-66. | |
7 | 赵新超,吕卫民,金国富.基于性能退化与D-S证据理论的可靠性评估方法[J].兵工自动化, 2019, 38(4): 53-56, 83. |
ZHAO X C, LYU W M, JIN G F. Reliability evaluation method based on performance degradation and D-S evidence theory[J]. Ordnance Industry Automation, 2019, 38(4): 53-56, 83. | |
8 | SALLAK M, SCHÖN W, AGUIRRE F. Reliability assessment for multi-state system under uncertainties based on the Dempster-Shafer theory[J]. IIE Transactions, 2013, 45(9): 995-1007. 10.1080/0740817x.2012.706378 |
9 | 孙锐.基于D-S证据理论的信息融合及在可靠性数据处理中的应用研究[D].成都:电子科技大学, 2012: 43-75. |
SUN R. Research on D-S evidence theory based information fusion and its application in reliability data processing[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 43-75. | |
10 | YAGER R R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 41(2): 93-137. 10.1016/0020-0255(87)90007-7 |
11 | 孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报, 2000, 28(8): 117-119. 10.3321/j.issn:0372-2112.2000.08.036 |
SUN Q, YE X Q, GU W K. A new combination rules of evidence theory[J]. Acta Electronica Sinica, 2000, 28(8): 117-119. 10.3321/j.issn:0372-2112.2000.08.036 | |
12 | YANG Y X, PAN X, CUI Q D. An evidence combination rule based on transferable belief model and application in reliability assessment with multi-source data[J]. IEEE Access, 2020, 8: 69096-69104. 10.1109/access.2020.2985872 |
13 | MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1): 1-9. 10.1016/s0167-9236(99)00084-6 |
14 | CHEN L Z, SHI W K, DENG Y, et al. A new fusion approach based on distance of evidences[J]. Journal of Zhejiang University — SCIENCE A (Applied Physics & Engineering), 2005, 6(5): 476-482. 10.1631/jzus.2005.a0476 |
15 | 黄建招,谢建,李良,等.基于冲突系数和Pignistic概率距离的改进证据组合方法[J].传感器与微系统, 2013, 32(9): 21-24. 10.3969/j.issn.1000-9787.2013.09.006 |
HUANG J Z, XIE J, LI L, et al. Improved combination method of evidence based on conflict coefficient and Pignistic probability distance[J]. Transducer and Microsystem Technologies, 2013, 32(9): 21-24. 10.3969/j.issn.1000-9787.2013.09.006 | |
16 | 汤潮,蒋雯,陈运东,等.新不确定度量下的冲突证据融合[J].系统工程理论与实践, 2015, 35(9): 2394-2400. 10.12011/1000-6788(2015)9-2394 |
TANG C, JIANG W, CHEN Y D, et al. Conflicting evidence combination based on a new measure method of uncertainty[J]. Systems Engineering — Theory & Practice, 2015, 35(9): 2394-2400. 10.12011/1000-6788(2015)9-2394 | |
17 | 孟晨晨,肖建于. D-S证据组合规则下的修正系数的研究[J].计算机工程与应用, 2016, 52(19): 63-67, 200. 10.3778/j.issn.1002-8331.1603-0138 |
MENG C C, XIAO J Y. Study on correction coefficient of D-S evidence combination rule[J]. Computer Engineering and Applications, 2016, 52(19): 63-67, 200. 10.3778/j.issn.1002-8331.1603-0138 | |
18 | WANG Z, XIAO F Y. An improved multi-source data fusion method based on the belief entropy and divergence measure[J]. Entropy, 2019, 21(6): No.611. 10.3390/e21060611 |
19 | 吕佳朋,史贤俊,秦玉峰.一种修正证据冲突的D-S改进算法[J].电子测量技术, 2019, 42(19): 96-100. |
LYU J P, SHI X J, QIN Y F. An improved D-S algorithm for correcting evidence conflicts[J]. Electronic Measurement Technology, 2019, 42(19): 96-100. | |
20 | 徐孙庆,耿俊豹,魏曙寰,等.一种改进的D-S冲突证据合成方法[J].火力与指挥控制, 2019, 44(10): 84-88. 10.3969/j.issn.1002-0640.2019.10.017 |
XU S Q, GENG J B, WEI S H, et al. An improved D-S conflicting evidence combination method[J]. Fire Control & Command Control, 2019, 44(10): 84-88. 10.3969/j.issn.1002-0640.2019.10.017 | |
21 | 李波.基于Pignistic相似度与改进DS证据理论的综合评估方法[J].计算机应用研究, 2018, 35(12): 3682-3684, 3688. 10.3969/j.issn.1001-3695.2018.12.036 |
LI B. Synthesis assessment method based on Pignistic similarity and improved DS evidence theory[J]. Application Research of Computers, 2018, 35(12): 3682-3684, 3688. 10.3969/j.issn.1001-3695.2018.12.036 | |
22 | 蒋斌,梁小安,张亮,等.基于改进修正权重的证据组合方法[J].计算机工程与应用, 2021, 57(24): 100-106. |
JIANG B, LIANG X A, ZHANG L, et al. Evidence combination method based on improved modified weight[J]. Computer Engineering and Applications, 2021, 57(24): 100-106. | |
23 | SMETS P, KENNES R. The transferable belief model[J]. Artificial Intelligence, 1994, 66(2): 191-234. 10.1016/0004-3702(94)90026-4 |
24 | JOUSSELME A L, GRENIER D, BOSSÉ É. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2): 91-101. 10.1016/s1566-2535(01)00026-4 |
25 | DENG Y. Uncertainty measure in evidence theory[J]. Science China Information Sciences, 2020, 63(11): No.210201. 10.1007/s11432-020-3006-9 |
[1] | 王蕾, 程世娟, 韩雨. 基于时变Copula函数的多部件系统可靠性评估[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 953-959. |
[2] | 马国帅, 钱宇华, 张亚宇, 李俊霞, 刘郭庆. 动态异构信息融合的科研合作潜力预测[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2775-2783. |
[3] | 李豆豆, 李汪根, 夏义春, 束阳, 高坤. 基于特征交互与自适应融合的骨骼动作识别[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2581-2587. |
[4] | 王昱, 范子琳, 任田君, 姬晓飞. 不完备信息下基于切换推理证据网络的空中目标识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1071-1078. |
[5] | 许蕴韬, 朱俊武, 孙彬文, 孙茂圣, 陈四海. 选举供应链:基于区块链的供应链自治框架[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1770-1775. |
[6] | 丁行硕, 李翔, 谢乾. 基于标签分层延深建模的企业画像构建方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1170-1177. |
[7] | 焦守龙, 段友祥, 孙歧峰, 庄子浩, 孙琛皓. 融合实体描述信息和邻居节点特征的知识表示学习方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1050-1056. |
[8] | 李昕, 贾韬. 基于组蛋白修饰数据预测基因差异性表达的深度融合模型[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3404-3412. |
[9] | 龚胜佳, 张琳琳, 赵楷, 刘军涛, 杨涵. 基于区块链技术的虚假新闻检测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3458-3464. |
[10] | 张露, 刘家鹏, 田冬梅. 基于Stacking-Bagging-Vote多源信息融合模型的财务预警应用[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 280-286. |
[11] | 曹建芳, 田晓东, 贾一鸣, 闫敏敏. 改进DeepLabV3+模型在壁画分割中的应用[J]. 计算机应用, 2021, 41(5): 1471-1476. |
[12] | 王艺洁, 凡佳飞, 王陈宇. 云边环境下基于博弈论的两阶段任务迁移策略[J]. 计算机应用, 2021, 41(5): 1392-1398. |
[13] | 毛莺池, 徐雪松, 刘鹏飞. 基于稳定匹配的多用户任务卸载策略[J]. 计算机应用, 2021, 41(3): 786-793. |
[14] | 张舒瑶, 李勇华, 范家佳. 基于博弈论的散货港口堆场堆位分配算法[J]. 计算机应用, 2021, 41(3): 867-874. |
[15] | 雷鹰, 郑万波, 魏嵬, 夏云霓, 李晓波, 刘诚武, 谢洪. 基于概率性能感知演化博弈策略的“云+边”混合环境中任务卸载方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3302-3308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||