| 1 | CHEN H P, CONTE A, GROSSI R, et al. On breaking truss-based communities [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 117-126.  10.1145/3447548.3467365 | 
																													
																						| 2 | 竺俊超, 王朝坤. 复杂条件下的社区搜索方法[J]. 软件学报, 2019, 30 (3): 552-572. | 
																													
																						|  | ZHU J C, WANG C K. Approaches to community search under complex conditions[J]. Journal of Software, 2019, 30 (3): 552-572. | 
																													
																						| 3 | HUANG X, CHENG H, QIN L, et al. Querying k-truss community in large and dynamic graphs [C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 1311-1322.  10.1145/2588555.2610495 | 
																													
																						| 4 | WANG Y Q, GU Y, SHUN J L. Theoretically-efficient and practical DBSCAN [C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020: 2555-2571.  10.1145/3318464.3380582 | 
																													
																						| 5 | PACACI A, BONIFATI A, ÖZSU M T. Regular path query evaluation on streaming graphs [C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020: 1415-1430.  10.1145/3318464.3389733 | 
																													
																						| 6 | YUAN L, QIN L, ZHANG W J, et al. Index-based densest clique percolation community search in networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (5): 922-935.  10.1109/tkde.2017.2783933 | 
																													
																						| 7 | LIN D D, WONG R C W, XIE M, et al. Index-free approach with theoretical guarantee for efficient random walk with restart query [C]// Proceedings of the 2020 IEEE International Conference on Data Engineering. Piscataway: IEEE, 2020: 913-924.  10.1109/icde48307.2020.00084 | 
																													
																						| 8 | FRITZ M, BEHRINGER M, SCHWARZ H. LOG-Means: efficiently estimating the number of clusters in large datasets[J]. Proceedings of the VLDB Endowment, 2020, 13 (12): 2118-2131.  10.14778/3407790.3407813 | 
																													
																						| 9 | BANERJEE S, PAL B. On the enumeration of maximal (Δ,γ)-cliques of a temporal network [C]// Proceedings of the 2019 ACM India Joint International Conference on Data Science and Management of Data. New York: ACM, 2019: 112-120.  10.1145/3297001.3297015 | 
																													
																						| 10 | CHANG L J. Efficient maximum clique computation over large sparse graphs [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 529-538.  10.1145/3292500.3330986 | 
																													
																						| 11 | BRON C, KERBOSCH J. Algorithm 457: finding all cliques of an undirected graph[J]. Communications of the ACM, 1973, 16 (9): 575-577.  10.1145/362342.362367 | 
																													
																						| 12 | TOMITA E, TANAKA A, TAKAHASHI H. The worst-case time complexity for generating all maximal cliques and computational experiments[J]. Theoretical Computer Science, 2006, 363 (1): 28-42.  10.1016/j.tcs.2006.06.015 | 
																													
																						| 13 | FANG Y X, WANG Z, CHENG R, et al. On spatial-aware community search[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31 (4): 783-798.  10.1109/tkde.2018.2845414 | 
																													
																						| 14 | WEI V J, WONG R C W, LONG C. Architecture-intact oracle for fastest path and time queries on dynamic spatial networks [C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020: 1841-1856.  10.1145/3318464.3389718 | 
																													
																						| 15 | SOZIO M, GIONIS A. The community-search problem and how to plan a successful cocktail party [C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 939-948.  10.1145/1835804.1835923 | 
																													
																						| 16 | REZVANI M, REZVANI M. Truss decomposition using triangle graphs[J]. Soft Computing, 2022, 26 (1): 55-68.  10.1007/s00500-021-06468-9 | 
																													
																						| 17 | LI X D, CHENG R, CHANG K C C, et al. On analyzing graphs with motif-paths[J]. Proceedings of the VLDB Endowment, 2021, 14 (6): 1111-1123.  10.14778/3447689.3447714 | 
																													
																						| 18 | MA C H, CHENG R, LAKSHMANAN L V S, et al. LINC: a motif counting algorithm for uncertain graphs[J]. Proceedings of the VLDB Endowment, 2019, 13 (2): 155-168.  10.14778/3364324.3364330 | 
																													
																						| 19 | MICALE G, GIUGNO R, FERRO A, et al. Fast analytical methods for finding significant labeled graph motifs[J]. Data Mining and Knowledge Discovery, 2018, 32 (2): 504-531.  10.1007/s10618-017-0544-8 | 
																													
																						| 20 | BENSON A R, GLEICH D F, LESKOVEC J. Tensor spectral clustering for partitioning higher-order network structures [C]// Proceedings of the 2015 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2015: 118-126.  10.1137/1.9781611974010.14 | 
																													
																						| 21 | BENSON A R, GLEICH D F, LESKOVEC J. Higher-order organization of complex networks[J]. Science of Computer and Data, 2016, 353 (6295): 163-166.  10.1126/science.aad9029 | 
																													
																						| 22 | FANG Y X, CHENG R, LI X D, et al. Effective community search over large spatial graphs[J]. Proceedings of the VLDB Endowment, 2017, 10 (6): 709-720.  10.14778/3055330.3055337 | 
																													
																						| 23 | CAO J, LI B T, GUI X Q. Research on the influence of network motif on link prediction [C]// Proceedings of the 2016 6th International Conference on Information Technology for Manufacturing Systems. Lancaster: DEStech Transactions on Computer Science and Engineering, 2016.  10.12783/dtcse/itms2016/9455 | 
																													
																						| 24 | DAVE V S, AHMED N K, HASAN M AL. E-CLoG: counting edge-centric local graphlets [C]// Proceedings of the 2017 IEEE International Conference on Big Data. Piscataway: IEEE, 2017: 586-595.  10.1109/bigdata.2017.8257974 | 
																													
																						| 25 | LI P Z, HUANG L, WANG C D, et al. EdMot: an Edge enhancement approach for motif-aware community detection [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 479-487.  10.1145/3292500.3330882 | 
																													
																						| 26 | ABUODA G, DE FRANCISCI MORALES G, ABOULNAGA A. Link prediction via higher-order motif features [C]// Proceedings of the 2019 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 11906. Cham: Springer, 2020: 412-429. |