针对深度子空间聚类问题中不同层次特征中互补信息挖掘困难的问题,在深度自编码器的基础上,提出了一种在编码器获取的低层和高层特征之间探索互补信息的多样性表示的深度子空间聚类(DRDSC)算法。首先,基于希尔伯特-施密特独立性准则(HSIC)建立了不同层次特征衡量多样性表示模型;其次,在深度自编码器网络结构中引入特征多样性表示模块,从而挖掘有利于提升聚类效果的图像特征;此外,更新了损失函数的形式,有效融合了多层次表示的底层子空间;最后,在常用的聚类数据集上进行了多次实验。实验结果表明,DRDSC在数据集Extended Yale B、ORL、COIL20和Umist上的聚类错误率分别达到1.23%、10.50%、1.74%和17.71%,与高效稠密子空间聚类(EDSC)相比,分别降低了10.41、16.75、13.12和12.92个百分点;与深度子空间聚类(DSC)相比,分别降低了1.44、3.50、3.68和9.17个百分点,说明所提出的DRDSC算法有更好的聚类效果。
针对现有审稿人推荐算法主要通过亲和力分数分配审稿人,而忽略了审稿人与论文研究方向匹配的问题,提出一种基于亲和力与研究方向覆盖率的审稿人推荐算法(ARDC)。首先,根据研究方向在待审论文和审稿人论文组中出现的频数,确定论文选择审稿人的次序;然后,综合审稿人和论文间的亲和力得分以及审稿人对论文的研究方向覆盖得分,来计算审稿人对待审论文的综合审阅得分,并依据轮询调度得到论文预分配审稿小组;最后,对预分配审稿小组进行利益冲突检查与消解以实现最终的审稿小组推荐。实验结果表明,与基于松弛迭代的分配算法(FairIR)和同行评审公平分配算法(PR4A)等基于分配的审稿人推荐算法相比,所提算法在牺牲少量亲和力的情况下,将研究方向覆盖得分平均提高了38%,从而确保推荐结果更加准确合理。
针对动态时序数据部分周期模式挖掘过程存在的计算复杂度过高和扩展性差等问题,提出了一种结合多尺度理论的时间序列部分周期模式挖掘算法(MSI-PPPGrowth),所提算法充分利用了时序数据客观存在的时间多尺度特性,将多尺度理论引入时序数据的部分周期模式挖掘过程。首先,将尺度划分后的原始数据以及增量时序数据作为更细粒度的基准尺度数据集进行独立挖掘;然后,利用不同尺度数据间的相关性实现尺度转换,以间接获取动态更新后的数据集对应的全局频繁模式,从而避免了原始数据集的重复扫描和树结构的不断调整。其中,基于克里金法并考虑时序周期性设计了一个新的频繁缺失计数估计模型(PJK-EstimateCount),以有效估计在尺度转换过程中的缺失项支持度计数。实验结果表明,MSI-PPPGrowth具有良好的可扩展性和实时性,尤其是对于稠密数据集,其性能优势更为突出。
针对现有的复杂事件匹配处理方法存在的匹配代价高的问题,提出了一种利用事件缓冲区(有序事件列表)进行递归遍历的复杂事件匹配算法ReCEP。不同于现有方法利用自动机在事件流上进行匹配,该算法将复杂事件查询模式中的约束条件分解为不同类型,再在有序列表上对不同约束分别进行递归校验。首先,根据查询模式将相关事件实例按照事件类型进行缓存;其次,在有序列表上对事件实例执行查询过滤操作,并给出了一种基于递归遍历的算法来确定初始事件实例并且获取候选序列;最后,对候选序列的属性约束进行进一步的校验。基于股票交易模拟数据进行的实验测试和分析的结果表明,与当前主流的匹配方法SASE和Siddhi相比,ReCEP算法能够有效地减少查询匹配的处理时间,总体性能上均更优,查询匹配效率提升了8.64%以上。可见,所提出的复杂事件匹配方法能够有效提高复杂事件匹配的效率。
针对隐私保护效用挖掘(PPUM)中脱敏时间长、计算复杂度高,以及算法副作用大等问题,提出一种基于BCU-Tree和字典(BCUTD)的高效用挖掘快速脱敏算法。该算法提出了一种新的树结构BCU-Tree来存储敏感项信息,基于按位运算符编码模型降低树的构建时间并减小搜索空间。采用字典表存储树结构中的所有节点,修改敏感项时只需访问字典表,最终达到数据库脱敏目的。在4个不同的数据集上进行的实验中,BCUTD算法在脱敏时间和副作用上的表现要明显优于经典的优先隐藏高效用项(HHUIF)算法、最大敏感效用-最大项效用(MSU-MAU)算法和使用树与表结构的快速扰动(FPUTT)算法。实验结果表明,BCUTD算法能够有效减少脱敏时间,降低算法副作用以及计算复杂度。
pSCAN算法的聚类结果受密度约束参数和相似度阈值参数的影响,如果用户提供的聚类参数得到的聚类结果无法满足需求,那么用户可以通过实例簇表达自己的聚类需求。针对实例簇表达聚类查询需求的问题,提出一种实例簇驱动的图结构聚类参数计算算法PART及其改进算法ImPART。首先,分析两个聚类参数对聚类结果的影响,并提取实例簇的相关子图;其次,对相关子图进行分析得到密度约束参数的可行区间,并根据当前密度约束参数和节点之间的结构相似度将实例簇内节点划分为核心节点和非核心节点;最后,依据节点划分结果计算出当前密度约束参数对应的最优相似度阈值参数,并在相关子图上对得到的参数进行验证和优化,直到得到满足实例簇需求的聚类参数。在真实数据集上的实验结果表明,所提算法能够为用户实例簇返回一组有效参数,且所提改进算法ImPART的运行时间比PART缩短了20%以上,能够快速有效地为用户返回满足实例簇要求的最优聚类参数。