| 1 | CHOI H S, KIM J H, HUH J, et al. Phase-aware speech enhancement with deep complex U-Net[EB/OL]. (2023-08-06) [2023-08-08].. | 
																													
																						| 2 | HASANNEZHAD M, YU H, ZHU W P, et al. PACDNN: a phase-aware composite deep neural network for speech enhancement[J]. Speech Communication, 2022, 136: 1-13.  10.1016/j.specom.2021.10.002 | 
																													
																						| 3 | TAN K, WANG D. A convolutional recurrent neural network for real-time speech enhancement[C]// Proceedings of the INTERSPEECH 2018. [S.l.]: International Speech Communication Association, 2018: 3229-3233.  10.21437/interspeech.2018-1405 | 
																													
																						| 4 | LI Y, SUN M, ZHANG X. Perception-guided generative adversarial network for end-to-end speech enhancement[J]. Applied Soft Computing, 2022, 128: No.109446.  10.1016/j.asoc.2022.109446 | 
																													
																						| 5 | WANG Z, ZHANG T, SHAO Y, et al. LSTM-convolutional-BLSTM encoder-decoder network for minimum mean-square error approach to speech enhancement[J]. Applied Acoustics, 2021, 172: No.107647.  10.1016/j.apacoust.2020.107647 | 
																													
																						| 6 | YU G, WANG Y, ZHENG C, et al. CycleGAN-based non-parallel speech enhancement with an adaptive attention-in-attention mechanism[C]// Proceedings of the 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2021: 523-529. | 
																													
																						| 7 | HU Y, LIU Y, LV S, et al. DCCRN: deep complex convolution recurrent network for phase-aware speech enhancement[C]// Proceedings of the INTERSPEECH 2020. [S.l.]: International Speech Communication Association, 2020: 2472-2476.  10.21437/interspeech.2020-2537 | 
																													
																						| 8 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. | 
																													
																						| 9 | KOIZUMI Y, YATABE K, DELCROIX M, et al. Speech enhancement using self-adaptation and multi-head self-attention[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 181-185.  10.1109/icassp40776.2020.9053214 | 
																													
																						| 10 | ZHANG Q, SONG Q, NI Z, et al. Time-frequency attention for monaural speech enhancement[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 7852-7856.  10.1109/icassp43922.2022.9746454 | 
																													
																						| 11 | 高戈,王霄,曾邦,等. 基于时频联合损失函数的语音增强算法[J]. 计算机应用, 2022, 42(S1):316-320. | 
																													
																						|  | GAO G, WANG X, ZENG B, et al. Speech enhancement algorithm based on time-frequency joint loss function[J]. Journal of Computer Applications, 2022, 42(S1):316-320. | 
																													
																						| 12 | PASCUAL S, BONAFONTE A, SERRÀ J. SEGAN: speech enhancement generative adversarial network[C]// Proceedings of the INTERSPEECH 2017. [S.l.]: International Speech Communication Association, 2017: 3642-3646.  10.21437/interspeech.2017-1428 | 
																													
																						| 13 | VEAUX C, YAMAGISHI J, KING S. The voice bank corpus: design, collection and data analysis of a large regional accent speech database[C]// Proceedings of the 2013 International Conference Oriental COCOSDA Held Jointly with Conference on Asian Spoken Language Research and Evaluation. Piscataway: IEEE, 2013: 1-4.  10.1109/icsda.2013.6709856 | 
																													
																						| 14 | THIEMANN J, ITO N, VINCENT E. The Diverse Environments Multi-channel Acoustic Noise Database (DEMAND): a database of multichannel environmental noise recordings[J]. Proceedings of Meetings on Acoustics, 2013, 19(1): No.035081.  10.1121/1.4806631 | 
																													
																						| 15 | GAROFOLO J S, LAMEL L F, FISHER W M. TIMIT acoustic phonetic continuous speech corpus[DS/OL]. [2022-12-15]..  10.6028/nist.ir.4930 | 
																													
																						| 16 | VARGA A, STEENEKEN H J M. Assessment for automatic speech recognition: Ⅱ. NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems[J]. Speech Communication, 1993, 12(3): 247-251.  10.1016/0167-6393(93)90095-3 | 
																													
																						| 17 | RETHAGE D, PONS J, SERRA X. A Wavenet for speech denoising[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2018: 5069-5073.  10.1109/icassp.2018.8462417 | 
																													
																						| 18 | SHAH N, PATIL H A, SONI M H. Time-frequency mask-based speech enhancement using convolutional generative adversarial network[C]// Proceedings of the 2018 AP sia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2018:1246-1251.  10.23919/apsipa.2018.8659692 | 
																													
																						| 19 | MACARTNEY C, WEYDE T. Improved speech enhancement with the Wave-U-Net[EB/OL]. (2018-11-27) [2022-12-15].. | 
																													
																						| 20 | SONI M H, SHAH N, PATIL H A. Time-frequency masking-based speech enhancement using generative adversarial network[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2018: 5039-5043.  10.1109/icassp.2018.8462068 | 
																													
																						| 21 | KIM J H, YOO J, CHUN S, et al. Multi-domain processing via hybrid denoising networks for speech enhancement[EB/OL]. (2018-12-21) [2022-12-15]..  10.48550/arXiv.1812.08914 | 
																													
																						| 22 | TANG C, LUO C, ZHAO Z, et al. Joint time-frequency and time domain learning for speech enhancement[C]// Proceedings of the 29th International Joint Conferences on Artificial Intelligence. California: ijcai.org, 2020: 3816-3822.  10.24963/ijcai.2020/528 | 
																													
																						| 23 | 沈梦强,于文年,易黎,等. 基于GAN的全时间尺度语音增强方法[J].计算机工程, 2023, 49(6):115-122, 130. | 
																													
																						|  | SHEN M Q, YU W N, YI L, et al. Full-time scale speech enhancement method based on GAN[J]. Computer Engineering, 2023, 49(6):115-122, 130. |