《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (12): 3911-3917.DOI: 10.11772/j.issn.1001-9081.2022111704
所属专题: 多媒体计算与计算机仿真
廉飞宇1,2, 张良1,2(), 王杰栋3, 靳于康1,2, 柴玉1,2
收稿日期:
2022-11-15
修回日期:
2023-03-13
接受日期:
2023-03-20
发布日期:
2023-07-12
出版日期:
2023-12-10
通讯作者:
张良
作者简介:
廉飞宇(1997—),男,山东临沂人,硕士研究生,主要研究方向:三维点云处理、点云分割基金资助:
Feiyu LIAN1,2, Liang ZHANG1,2(), Jiedong WANG3, Yukang JIN1,2, Yu CHAI1,2
Received:
2022-11-15
Revised:
2023-03-13
Accepted:
2023-03-20
Online:
2023-07-12
Published:
2023-12-10
Contact:
Liang ZHANG
About author:
LIAN Feiyu, born in 1997, M. S. candidate. His research interests include three-dimensional point cloud processing, point cloud segmentation.Supported by:
摘要:
针对在多对象且空间拓扑关系复杂的室外场景环境中相似地类区分难的问题,提出一种结合图模型与注意力机制模块的A-Edge-SPG(Attention-EdgeConv SuperPoint Graph)图神经网络。首先,利用图割和几何特征结合的方法对超点进行分割;其次,在超点内部构造局部邻接图,从而在捕获场景中点云的上下文信息的同时利用注意力机制模块凸显关键信息;最后,构建超点图(SPG)模型,并采用门控循环单元(GRU)聚合超点和超边特征,实现对不同地类点云间的精确分割。在Semantic3D数据集上对A-Edge-SPG模型和SPG-Net(SPG neural Network)模型的语义分割效果进行比较分析。实验结果表明,相较于SPG模型,A-Edge-SPG模型在总体分割精度(OA)、平均交并比(mIoU)和平均精度均值(mAA)上分别提升了1.8、5.1和2.8个百分点,并且在高植被、矮植被等相似地类的分割精度上取得了明显的提升,改善了相似地类间语义分割的效果。
中图分类号:
廉飞宇, 张良, 王杰栋, 靳于康, 柴玉. 基于图模型与注意力机制的室外场景点云分割模型[J]. 计算机应用, 2023, 43(12): 3911-3917.
Feiyu LIAN, Liang ZHANG, Jiedong WANG, Yukang JIN, Yu CHAI. Outdoor scene point cloud segmentation model based on graph model and attention mechanism[J]. Journal of Computer Applications, 2023, 43(12): 3911-3917.
特征名称 | 维度 | 定义 |
---|---|---|
偏移量均值 | 3 | |
偏移量标准差 | 3 | |
重心偏移量 | 3 | |
长度比 | 1 | |
面积比 | 1 | |
体积比 | 1 | |
点数比 | 1 |
表1 超边特征定义
Tab.1 Hyperedge feature definition
特征名称 | 维度 | 定义 |
---|---|---|
偏移量均值 | 3 | |
偏移量标准差 | 3 | |
重心偏移量 | 3 | |
长度比 | 1 | |
面积比 | 1 | |
体积比 | 1 | |
点数比 | 1 |
模型 | OA | mAA | mIoU |
---|---|---|---|
SPG-Net | 94.4 | 77.8 | 66.6 |
A-Edge-SPG | 96.2 | 80.6 | 71.7 |
表2 两个模型的OA、mAA与mIoU对比 (%)
Tab. 2 Comparison of OA, mAA and mIoU between two models
模型 | OA | mAA | mIoU |
---|---|---|---|
SPG-Net | 94.4 | 77.8 | 66.6 |
A-Edge-SPG | 96.2 | 80.6 | 71.7 |
类别 | SPG-Net | A-Edge-SPG |
---|---|---|
人造地面 | 98.1 | 98.2 |
自然地面 | 96.4 | 97.5 |
高植被 | 77.1 | 84.7 |
矮植被 | 56.5 | 60.9 |
建筑 | 96.6 | 98.7 |
人造景观 | 36.2 | 37.8 |
移动物体 | 68.1 | 68.5 |
汽车 | 94.3 | 99.0 |
表3 各类别平均精度均值对比 (%)
Tab.3 mAA comparison of different types
类别 | SPG-Net | A-Edge-SPG |
---|---|---|
人造地面 | 98.1 | 98.2 |
自然地面 | 96.4 | 97.5 |
高植被 | 77.1 | 84.7 |
矮植被 | 56.5 | 60.9 |
建筑 | 96.6 | 98.7 |
人造景观 | 36.2 | 37.8 |
移动物体 | 68.1 | 68.5 |
汽车 | 94.3 | 99.0 |
邻近点数k | 总体分割精度/% | 平均分割精度/% |
---|---|---|
5 | 95.6 | 80.2 |
10 | 96.2 | 80.6 |
15 | 95.3 | 79.5 |
20 | 94.3 | 79.0 |
表4 不同近邻数的分割精度对比
Tab. 4 Results of segmentation accuracy for different nearest neighbor numbers
邻近点数k | 总体分割精度/% | 平均分割精度/% |
---|---|---|
5 | 95.6 | 80.2 |
10 | 96.2 | 80.6 |
15 | 95.3 | 79.5 |
20 | 94.3 | 79.0 |
1 | YANG B, WEI Z, LI Q, et al. Semiautomated building facade footprint extraction from mobile LiDAR point clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 766-770. 10.1109/lgrs.2012.2222342 |
2 | YANG B, DONG Z, ZHAO G, et al. Hierarchical extraction of urban objects from mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99: 45-57. 10.1016/j.isprsjprs.2014.10.005 |
3 | ZHANG J, LIN X. Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing[J]. International Journal of Image and Data Fusion, 2017, 8(1): 1-31. 10.1080/19479832.2016.1160960 |
4 | 范士俊,张爱武,胡少兴,等. 基于随机森林的机载激光全波形点云数据分类方法[J]. 中国激光, 2013, 40(9): No.0914001. 10.3788/cjl201340.0914001 |
FAN S J, ZHANG A W, HU S X, et al. A method of classification for airborne full waveform LiDAR data based on random forest[J]. Chinese Journal of Lasers, 2013, 40(9): No.0914001. 10.3788/cjl201340.0914001 | |
5 | 杨必胜,梁福逊,黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516. 10.11947/j.AGCS.2017.20170351 |
YANG B S, LIANG F X, HUANG R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516. 10.11947/j.AGCS.2017.20170351 | |
6 | 郭波,黄先锋,张帆,等. 顾及空间上下文关系的JointBoost点云分类及特征降维[J]. 测绘学报, 2013, 42(5): 715-721. |
GUO B, HUANG X F, ZHANG F, et al. Points cloud classification using JointBoost combined with contextual information for feature reduction[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 715-721. | |
7 | WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 286-304. 10.1016/j.isprsjprs.2015.01.016 |
8 | LIU W, SUN J, LI W, et al. Deep learning on point clouds and its application: a survey [J]. Sensors, 2019, 19(19): No.4188. 10.3390/s19194188 |
9 | BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127. 10.1561/2200000006 |
10 | 杨柳,刘启亮,袁浩涛. 城市激光点云语义分割典型方法对比研究[J]. 地理与地理信息科学, 2021, 37(1):17-25. 10.3969/j.issn.1672-0504.2021.01.004 |
YANG L, LIU Q L, YUAN H T. A comparative study on typical methods for semantic segmentation of laser point clouds in urban areas [J]. Geography and Geo-Information Science, 2021, 37(1):17-25. 10.3969/j.issn.1672-0504.2021.01.004 | |
11 | MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition [C]// Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928. 10.1109/iros.2015.7353481 |
12 | WU Z, SONG S, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920. 10.1109/cvpr.2015.7298801 |
13 | YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): No.210. 10.1145/2980179.2980238 |
14 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. 10.1109/cvpr.2017.16 |
15 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:5101-5114. |
16 | WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): No.146. 10.1145/3326362 |
17 | 赵中阳,程英蕾,释小松,等. 基于多尺度特征和PointNet的LiDAR点云地物分类方法[J]. 激光与光电子学进展, 2019, 56(5): No.052804. 10.3788/lop56.052804 |
ZHAO Z Y, CHENG Y L, SHI X S, et al. Terrain classification of LiDAR point cloud method based on multi-scale features and PointNet [J]. Laser and Optoelectronics Progress, 2019, 56(5): No.052804. 10.3788/lop56.052804 | |
18 | 马京晖,潘巍,王茹. 基于K-means聚类的三维点云分类[J]. 计算机工程与应用, 2020, 56(17):181-186. 10.3778/j.issn.1002-8331.1909-0305 |
MA J H, PAN W, WANG R. 3D point cloud classification based on K-means clustering[J]. Computer Engineering and Applications, 2020, 56(17):181-186. 10.3778/j.issn.1002-8331.1909-0305 | |
19 | 罗海峰,方莉娜,陈崇成,等. 基于DBN的车载激光点云路侧多目标提取[J]. 测绘学报, 2018, 47(2): 234-246. 10.11947/j.AGCS.2018.20170524 |
LUO H F, FANG L N, CHEN C C, et al. Roadside multiple objects extraction from mobile laser scanning point cloud based on DBN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 234-246. 10.11947/j.AGCS.2018.20170524 | |
20 | WANG Z, ZHANG L, ZHANG L, et al. A Deep Neural Network with Spatial Pooling (DNNSP) for 3-D point cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4594-4604. 10.1109/tgrs.2018.2829625 |
21 | LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4558-4567. 10.1109/cvpr.2018.00479 |
22 | FILLIN S, PFEIFER N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 71-80. 10.1016/j.isprsjprs.2005.10.005 |
23 | DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D lidar point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 38(5): 97-102. |
24 | KOLMOGOROV V, ZABIN R. What energy functions can be minimized via graph cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159. 10.1109/tpami.2004.1262177 |
25 | LANDRIEU L, OBOZINSKI G. Cut Pursuit: fast algorithms to learn piecewise constant functions on general weighted graphs [J]. SIAM Journal on Imaging Sciences, 2017, 10(4): 1724-1766. 10.1137/17m1113436 |
26 | 任欢,王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1):1-6. 10.11772/j.issn.1001-9081.2020101634 |
REN H, WANG X G. Review of attention mechanisms[J]. Journal of Computer Applications, 2021, 41(S1): 1-6. 10.11772/j.issn.1001-9081.2020101634 | |
27 | 朱张莉,饶元,吴渊,等.注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11. 10.3969/j.issn.1003-0077.2019.06.001 |
ZHU Z L, RAO Y, WU Y, et al. Research progress of attention mechanism in deep learning [J]. Journal of Chinese Information Processing, 2019, 33(6): 1-11. 10.3969/j.issn.1003-0077.2019.06.001 | |
28 | 杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6, 26. |
YANG L, WU Y X, WANG J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(S2): 1-6, 26. | |
29 | 马超. 融合卷积神经网络和循环神经网络的车轮目标检测[J]. 测绘通报, 2020(8):139-143. |
MA C. Wheel detection integrating convolutional neural network and recurrent neural network[J]. Bulletin of Surveying and Mapping, 2020(8):139-143. | |
30 | HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D.net: a new large-scale point cloud classification benchmark [J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1: 91-98. 10.5194/isprs-annals-iv-1-w1-91-2017 |
31 | BENTLEY J L. Multidimensional binary search trees used for associative searching [J]. Communications of the ACM, 1975, 18(9): 509-517. 10.1145/361002.361007 |
[1] | 丁宇伟, 石洪波, 李杰, 梁敏. 基于局部和全局特征解耦的图像去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2571-2579. |
[2] | 李威, 陈玲, 徐修远, 朱敏, 郭际香, 周凯, 牛颢, 张煜宸, 易珊烨, 章毅, 罗凤鸣. 基于多任务学习的间质性肺病分割算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1285-1293. |
[3] | 张鹏飞, 韩李涛, 冯恒健, 李洪梅. 基于注意力机制和全局特征优化的点云语义分割[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1086-1092. |
[4] | 王铂越, 李英祥, 钟剑丹. 基于改进Res-UNet的昼夜地基云图分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1310-1316. |
[5] | 吴宁, 罗杨洋, 许华杰. 基于多尺度特征融合的遥感图像语义分割方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 737-744. |
[6] | 李子怡, 曲婷婷, 崇乾鹏, 徐金东. 基于模糊多尺度特征的遥感图像分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3581-3586. |
[7] | 刘永江, 陈斌. 基于多尺度记忆库的像素级无监督工业异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3587-3594. |
[8] | 郑秋梅, 牛薇薇, 王风华, 赵丹. 基于细节增强的双分支实时语义分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3058-3066. |
[9] | 周迪, 张自力, 陈佳, 胡新荣, 何儒汉, 张俊. 基于EfficientNetV2和物体上下文表示的胃癌图像分割方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2955-2962. |
[10] | 郑帅, 张晓龙, 邓鹤, 任宏伟. 基于多尺度特征融合和网格注意力机制的三维肝脏影像分割方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2303-2310. |
[11] | 郑智雄, 刘建华, 孙水华, 徐戈, 林鸿辉. 融合多窗口局部信息的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1796-1802. |
[12] | 郭玉彬, 文向, 刘攀, 李西明. 基于双流结构的跨模态行人重识别关系网络[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1803-1810. |
[13] | 鲁斌, 柳杰林. 基于特征增强的三维点云语义分割[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1818-1825. |
[14] | 袁泉, 徐雲鹏, 唐成亮. 基于路径标签的文档级关系抽取方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1029-1035. |
[15] | 何雪东, 宣士斌, 王款, 陈梦楠. 融合累积分布函数和通道注意力机制的DeepLabV3+图像分割算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 936-942. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||