| 1 | YAN H T, ZHANG C, WU M. Lawin Transformer: improving semantic segmentation transformer with multi-scale representations via large window attention[EB/OL]. (2022-01-05) [2022-02-11]..  10.48550/arXiv.2201.01615 | 
																													
																						| 2 | 田萱,王亮,丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2):440-468.  10.13328/j.cnki.jos.005659 | 
																													
																						|  | TIAN X, WANG L, DING Q. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2): 440-468.  10.13328/j.cnki.jos.005659 | 
																													
																						| 3 | 王龙飞,严春满. 道路场景语义分割综述[J]. 激光与光电子学进展, 2021, 58(12): No.1200002.  10.3788/lop202158.1200002 | 
																													
																						|  | WANG L F, YAN C M. Review on semantic segmentation of road scenes[J]. Laser and Optoelectronics Progress, 2021, 58(12): No.1200002.  10.3788/lop202158.1200002 | 
																													
																						| 4 | PANELLA F, LIPANI A, BOEHM J. Semantic segmentation of cracks: data challenges and architecture[J]. Automation in Construction, 2022, 135: No.104110.  10.1016/j.autcon.2021.104110 | 
																													
																						| 5 | MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542. | 
																													
																						| 6 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.  10.1109/cvpr.2015.7298965 | 
																													
																						| 7 | GUO M H, LIU Z N, MU T J, et al. Beyond self-attention: external attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022(Early Access): 1-13.  10.1109/tpami.2022.3211006 | 
																													
																						| 8 | GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368.  10.1007/s41095-022-0271-y | 
																													
																						| 9 | FAN M Y, LAI S Q, HUANG J S, et al. Rethinking BiSeNet for real-time semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9711-9720.  10.1109/cvpr46437.2021.00959 | 
																													
																						| 10 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.  10.1109/cvpr.2018.00745 | 
																													
																						| 11 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07) [2022-02-10]..  10.1109/tpami.2017.2699184 | 
																													
																						| 12 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.  10.1109/tpami.2017.2699184 | 
																													
																						| 13 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05) [2022-02-11]..  10.1007/978-3-030-01234-2_49 | 
																													
																						| 14 | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851.  10.1007/978-3-030-01234-2_49 | 
																													
																						| 15 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.  10.1109/cvpr42600.2020.01155 | 
																													
																						| 16 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. | 
																													
																						| 17 | 杨贞,彭小宝,朱强强,等. 基于Deeplab V3 plus的自适应注意力机制图像分割算法[J]. 计算机应用, 2022, 42(1):230-238. | 
																													
																						|  | YANG Z, PENG X B, ZHU Q Q, et al. Image segmentation algorithm with adaptive attention mechanism based on Deeplab V3 Plus[J]. Journal of Computer Applications, 2022, 42(1): 230-238. | 
																													
																						| 18 | YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 636-644.  10.1109/cvpr.2017.75 | 
																													
																						| 19 | 张蕊,李锦涛. 基于深度学习的场景分割算法研究综述[J]. 计算机研究与发展, 2020, 57(4):859-875.  10.7544/issn1000-1239.2020.20190513 | 
																													
																						|  | ZHANG R, LI J T. A survey on algorithm research of scene parsing based on deep learning[J]. Journal of Computer Research and Development, 2020, 57(4): 859-875.  10.7544/issn1000-1239.2020.20190513 | 
																													
																						| 20 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																						| 21 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2022-02-13]..  10.48550/arXiv.1704.04861 | 
																													
																						| 22 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.  10.1109/cvpr.2018.00474 | 
																													
																						| 23 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.  10.1109/iccv.2019.00140 | 
																													
																						| 24 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.  10.1109/cvpr.2017.195 | 
																													
																						| 25 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-12-20].. | 
																													
																						| 26 | 程晓悦,赵龙章,胡穹,等. 基于膨胀卷积平滑及轻型上采样的实时语义分割[J]. 激光与光电子学进展, 2020, 57(2): No.021017.  10.3788/lop57.021017 | 
																													
																						|  | CHENG X Y, ZHAO L Z, HU Q, et al. Real-time semantic segmentation based on dilated convolution smoothing and lightweight up-sampling[J]. Laser and Optoelectronics Progress, 2020, 57(2): No.021017.  10.3788/lop57.021017 | 
																													
																						| 27 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.  10.1109/tpami.2015.2389824 | 
																													
																						| 28 | 徐聪,王丽. 基于改进DeepLabv3+网络的图像语义分割方法[J]. 激光与光电子学进展, 2021, 58(16): No.1610008.  10.3788/lop202158.1610008 | 
																													
																						|  | XU C, WANG L. Image semantic segmentation method based on improved DeepLabv3+ network[J]. Laser and Optoelectronics Progress, 2021, 58(16): No.1610008.  10.3788/lop202158.1610008 | 
																													
																						| 29 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.  10.1109/cvpr.2017.106 | 
																													
																						| 30 | EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136.  10.1007/s11263-014-0733-5 | 
																													
																						| 31 | CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3213-3223.  10.1109/cvpr.2016.350 | 
																													
																						| 32 | OpenMMLab. MMSegmentation[CP/OL]. [2021-10-10].. | 
																													
																						| 33 | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with Transformers[EB/OL]. (2021-10-28) [2022-02-12].. |