| 1 | DENG X, LI R, ZHAO L, et al. Multi-obstacle path planning and optimization for mobile robot[J]. Expert Systems with Applications, 2021, 183: 115445.  10.1016/j.eswa.2021.115445 | 
																													
																						| 2 | 徐小强,王明勇,冒燕.基于改进人工势场法的移动机器人路径规划 [J].计算机应用,2020,40(12):3508-3512.  10.11772/j.issn.1001-9081.2020050640 | 
																													
																						|  | XU X Q, WANG M Y, MAO Y.Path planning of mobile robot based on improved artificial potential field method [J]. Journal of Computer Applications, 2020,40 (12): 3508-3512.  10.11772/j.issn.1001-9081.2020050640 | 
																													
																						| 3 | HUANG H, LI Y, BAI Q. An improved A star algorithm for wheeled robots path planning with jump points search and pruning method [J]. Complex Engineering Systems, 2022, 2(3): 11.  10.20517/ces.2022.12 | 
																													
																						| 4 | 李伟,金世俊.基于人工势场法和启发式采样的最优路径收敛方法[J].计算机应用,2021,41(10):2912-2918.  10.11772/j.issn.1001-9081.2020122021 | 
																													
																						|  | LI W, JIN S J. Optimal path convergence method based on artificial potential field method and informed sampling [J]. Journal of Computer Applications, 2021,41(10): 2912-2918.  10.11772/j.issn.1001-9081.2020122021 | 
																													
																						| 5 | 刘志强,何丽,袁亮,等.采用改进灰狼算法的移动机器人路径规划[J].西安交通大学学报,2022,56(10):49-60.  10.7652/xjtuxb202210005 | 
																													
																						|  | LIU Z Q, HE L, YUAN L, et al. Path planning of mobile robot based on TGWO algorithm [J]. Journal of Xi’an Jiaotong University, 2022,56(10): 49-60.  10.7652/xjtuxb202210005 | 
																													
																						| 6 | WANG J, LIU J, CHEN W, et al. Robot path planning via neural-network-driven prediction[J]. IEEE Transactions on Artificial Intelligence, 2021, 3(3): 451-460.  10.1109/tai.2021.3119890 | 
																													
																						| 7 | WU P, CAO Y, HE Y, et al. Vision-based robot path planning with deep learning[C]// Proceedings of the 11th International Conference on Computer Vision Systems. Cham: Springer, 2017: 101-111.  10.1007/978-3-319-68345-4_9 | 
																													
																						| 8 | ABDI A, ADHIKARI D, PARK J H. A novel hybrid path planning method based on Q-learning and neural network for robot arm [J]. Applied Sciences, 2021, 11(15): 6770.  10.3390/app11156770 | 
																													
																						| 9 | 马莹莹,杜暖男.基于改进正余弦算法的机器人路径规划[J].重庆交通大学学报(自然科学版),2021,40(9):17-23.  10.3969/j.issn.1674-0696.2021.09.03 | 
																													
																						|  | MA Y Y, DU N N. Robot path planning based on the improved sine cosine algorithm [J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021,40 (9): 17-23.  10.3969/j.issn.1674-0696.2021.09.03 | 
																													
																						| 10 | 刘景森,吉宏远,李煜.基于改进蝙蝠算法和三次样条插值的机器人路径规划[J].自动化学报,2021,47(7):1710-1719. | 
																													
																						|  | LIU J S, JI H Y, LI Y. Robotic path planning based on improved bat algorithm and cubic spline interpolation [J]. Acta Automatica Sinica, 2021,47 (7): 1710-1719. | 
																													
																						| 11 | HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications [J]. Future Generation Computer Systems, 2019, 97: 849-872.  10.1016/j.future.2019.02.028 | 
																													
																						| 12 | LIU C. An improved Harris hawks optimizer for job-shop scheduling problem[J]. The Journal of Supercomputing, 2021, 77: 14090-14129.  10.1007/s11227-021-03834-0 | 
																													
																						| 13 | JIA H, LANG C, OLIVA D, et al. Dynamic Harris hawks optimization with mutation mechanism for satellite image segmentation [J]. Remote Sensing, 2019, 11(12): 1421.  10.3390/rs11121421 | 
																													
																						| 14 | GOLILARZ N A, MIRMOZAFFARI M, GASHTEROODKHANI T A, et al. Optimized wavelet-based satellite image de-noising with multi-population differential evolution-assisted Harris hawks optimization algorithm[J]. IEEE Access, 2020, 8: 133076-133085.  10.1109/access.2020.3010127 | 
																													
																						| 15 | JIA H, PENG X, KANG L, et al. Pulse coupled neural network based on Harris hawks optimization algorithm for image segmentation [J]. Multimedia Tools and Applications, 2020, 79: 28369-28392.  10.1007/s11042-020-09228-3 | 
																													
																						| 16 | BANDYOPADHYAY R, KUNDU R, OLIVA D, et al. Segmentation of brain MRI using an altruistic Harris hawks’ optimization algorithm[J]. Knowledge-Based Systems, 2021, 232: 107468.  10.1016/j.knosys.2021.107468 | 
																													
																						| 17 | CAMPBELL M O N. The Great Eagles: Their Evolution, Ecology and Conservation [M]. Boca Raton: CRC Press, 2022:347-363.  10.1201/b21921-8 | 
																													
																						| 18 | TURABIEH H, AZWARI S A, ROKAYA M, et al. Enhanced Harris hawks optimization as a feature selection for the prediction of student performance [J]. Computing, 2021, 103: 1417-1438.  10.1007/s00607-020-00894-7 | 
																													
																						| 19 | ABDEL-BASSET M, DING W, EL-SHAHAT D. A hybrid Harris hawks optimization algorithm with simulated annealing for feature selection [J]. Artificial Intelligence Review, 2021, 54: 593-637.  10.1007/s10462-020-09860-3 | 
																													
																						| 20 | SIHWAIL R, OMAR K, ARIFFIN K A Z, et al. Improved Harris hawks optimization using elite opposition-based learning and novel search mechanism for feature selection [J]. IEEE Access, 2020, 8: 121127-121145.  10.1109/access.2020.3006473 | 
																													
																						| 21 | AL-SAFI H, MUNILLA J, RAHEBI J. Patient privacy in smart cities by blockchain technology and feature selection with Harris Hawks Optimization (HHO) algorithm and machine learning [J]. Multimedia Tools and Applications, 2022, 81: 8719-8743.  10.1007/s11042-022-12164-z | 
																													
																						| 22 | ZHANG Y, LIU R, WANG X, et al. Boosted binary Harris hawks optimizer and feature selection [J]. Engineering with Computers, 2021, 37: 3741-3770.  10.1007/s00366-020-01028-5 | 
																													
																						| 23 | CHAKRABORTY A, KAR A K. Swarm intelligence: a review of algorithms [M]// Nature-Inspired Computing and Optimization 10. Cham: Springer, 2017: 475-494.  10.1007/978-3-319-50920-4_19 | 
																													
																						| 24 | BARTHELEMY P, BERTOLOTTI J, WIERSMA D S. A Lévy flight for light [J]. Nature, 2008, 453: 495-498.  10.1038/nature06948 | 
																													
																						| 25 | GEZICI H, LIVATYALI H. Chaotic Harris hawks optimization algorithm [J]. Journal of Computational Design and Engineering, 2022, 9(1): 216-245.  10.1093/jcde/qwab082 | 
																													
																						| 26 | 刘景森,袁蒙蒙,李煜.基于改进的樽海鞘群算法求解机器人路径规划问题[J].计算机研究与发展,2022,59(6):1297-1314.  10.7544/issn1000-1239.20201016 | 
																													
																						|  | LIU J S, YUAN M M, LI Y. Robot path planning based on improved salp swarm algorithm [J]. Journal of Computer Research and Development, 2022,59(6): 1297-1314.  10.7544/issn1000-1239.20201016 |