1 |
周安伟. 基于神经认知诊断的个性化试题推荐方法研究[D]. 兰州:西北师范大学, 2021: 2-5.
|
|
ZHOU A W. Research on personalized test items recommendation based on neural cognitive diagnosis model[D]. Lanzhou: Northwest Normal University, 2021:2-5.
|
2 |
HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1999: 230-237.
|
3 |
TAY L, MEADE A W, CAO M. An overview and practical guide to IRT measurement equivalence analysis[J]. Organizational Research Methods, 2015, 18(1): 3-46.
|
4 |
DE LA TORRE J. DINA model and parameter estimation: a didactic[J]. Journal of Educational and Behavioral Statistics, 2009, 34(1): 115-130.
|
5 |
SU Y, CHENG Z, WU J, et al. Graph-based cognitive diagnosis for intelligent tutoring systems[J]. Knowledge-Based Systems, 2022, 253: No.109547.
|
6 |
WANG F, LIU Q, CHEN E, et al. Neural cognitive diagnosis for intelligent education systems[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 6153-6161.
|
7 |
LI G, HU Y, SHUAI J, et al. NeuralNCD: a neural network cognitive diagnosis model based on multi-dimensional features[J]. Applied Sciences, 2022, 12(19): No.9806.
|
8 |
张所娟, 余晓晗, 陈恩红, 等. 融合知识交互关系的认知诊断深度模型[J]. 模式识别与人工智能, 2023, 36(1): 22-33.
|
|
ZHANG S J, YU X H, CHEN E H, et al. A concept interaction-based cognitive diagnosis deep model[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(1): 22-33.
|
9 |
汤成. 基于深度学习与认知诊断的教学资源推荐算法研究[D]. 广州:华南理工大学, 2020: 1.
|
|
TANG C. Research on educational resource recommendation algorithm based on deep learning and cognitive diagnosis[D]. Guangzhou: South China University of Technology, 2020: 1.
|
10 |
朱天宇, 黄振亚, 陈恩红, 等. 基于认知诊断的个性化试题推荐方法[J]. 计算机学报, 2017, 40(1): 176-191.
|
|
ZHU T Y, HUANG Z Y, CHEN E H, et al. Cognitive diagnosis based personalized question recommendation[J]. Chinese Journal of Computers, 2017, 40(1): 176-191.
|
11 |
RENDLE S. Factorization machines[C]// Proceedings of the 2010 IEEE International Conference on Data Mining. Piscataway: IEEE, 2010: 995-1000.
|
12 |
JUAN Y, ZHUANG Y, CHIN W S, et al. Field-aware factorization machines for CTR prediction[C]// Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 43-50.
|
13 |
GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C]// Proceedings of the 26th International Joint Conference. California: ijcai.org, 2017: 1725-1731.
|
14 |
孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810.
|
|
SUN Z J, XUE L, XU Y M, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810.
|
15 |
ZHANG Y, LI Z, REN F, et al. Semi-automatic emotion recognition from textual input based on the constructed emotion thesaurus[C]// Proceedings of the 2005 International Conference on Natural Language Processing and Knowledge Engineering. Piscataway: IEEE, 2005: 571-576.
|
16 |
CHEN J, ZHANG H, HE X, et al. Attentive collaborative filtering: multimedia recommendation with item-and component-level attention[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 335-344.
|
17 |
李忧喜, 文益民, 易新河, 等. 一种改进的模糊认知诊断模型[J]. 数据采集与处理, 2017, 32(5): 958-969.
|
|
LI Y X, WEN Y M, YI X H, et al. Revised model of fuzzy cognitive diagnosis framework[J]. Journal of Data Acquisition and Processing, 2017, 32(5): 958-969.
|
18 |
YU H F, LO H Y, HSIEH H P, et al. Feature engineering and classifier ensemble for KDD cup 2010[EB/OL]. [2023-06-27]..
|
19 |
李猛. 基于神经认知诊断的学习分析与个性化习题推荐研究[D]. 南昌: 江西师范大学, 2021: 34-35.
|
|
LI M. Research on learning analysis and personalized exercise recommendation method based on neural cognitive diagnosis[D]. Nanchang: Jiangxi Normal University, 2021: 34-35.
|