| 1 | CHEN C L P, LIU Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1) :10-24. | 
																													
																						| 2 | CHEN C L P, LIU Z. Broad learning system: a new learning paradigm and system without going deep [C]// Proceedings of the 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation. Piscataway: IEEE, 2017:1271-1276. | 
																													
																						| 3 | ZHANG L, SUGANTHAN P N. A comprehensive evaluation of random vector functional link networks [J]. Information Sciences, 2016, 367/368: 1094-1105. | 
																													
																						| 4 | CHEN C L P, LIU Z, FENG S. Universal approximation capability of broad learning system and its structural variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1191-1204. | 
																													
																						| 5 | ZHAO H, ZHENG J, DENG W, et al. Semi-supervised broad learning system based on manifold regularization and broad network[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2020, 67(3): 983-994. | 
																													
																						| 6 | 贾贺姿.基于宽度学习和深度集成的图像分类[D].西安:西安电子科技大学, 2019: 38-61. | 
																													
																						|  | JIA H Z. Image classification based on broad learning and deep ensemble[D]. Xi’an: Xidian University, 2019: 38-61. | 
																													
																						| 7 | JIN J-W, CHEN C L P. Regularized robust broad learning system for uncertain data modeling [J]. Neurocomputing, 2018, 322:58-69. | 
																													
																						| 8 | 郑云飞,陈霸东.基于最小p-范数的宽度学习系统[J].模式识别与人工智能,2019,32(1):51-57. | 
																													
																						|  | ZHENG Y F, CHEN B D. Least p-norm broad learning system[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 51-57. | 
																													
																						| 9 | ZHOU Q, HE X. Broad learning model based on enhanced features learning [J]. IEEE Access, 2019, 7: 42536-42550. | 
																													
																						| 10 | 杨永娇,邱宇,占力超.基于宽度学习的智能电网数据服务器流量异常检测算法[J].计算机与现代化,2019(9):77-82,89. | 
																													
																						|  | YANG Y J, QIU Y, ZHAN L C. An anomaly detection approach on servers traffic in smart grid based on breadth learning algorithm[J]. Computer and Modernization, 2019(9): 77-82, 89. | 
																													
																						| 11 | LIN Z D, CHEN H P, YANG Q, et al. A flexible approach for human activity recognition based on broad learning system [C]// Proceedings of the 2019 11th International Conference on Machine Learning and Computing. New York: ACM, 2019:368-373. | 
																													
																						| 12 | 徐鹏飞,王敏,刘金平,等.基于数据分布特性的代价敏感宽度学习系统[J]. 控制与决策,2021, 36(7): 1686-1692. | 
																													
																						|  | XU P F, WANG M, LIU J P,et al. Data distribution-based cost-sensitive broad learning system[J]. Control and Decision, 2021, 36(7): 1686-1692. | 
																													
																						| 13 | ZONG W, HUANG G-B, CHEN Y. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101: 229-242. | 
																													
																						| 14 | CHU F, LIANG T, CHEN C L P, et al. Weighted broad learning system and its application in nonlinear industrial process modeling[J]. IEEE Transactions Neural Networks and Learning Systems, 2020, 31(8): 3017-3031. | 
																													
																						| 15 | 王萌铎,续欣莹,阎高伟,等.基于AdaBoost集成加权宽度学习系统的不平衡数据分类[J].计算机工程, 2020,48(4):99-105,112. | 
																													
																						|  | WANG M D, XU X Y, YAN G W, et al. Imbalanced data classification based on ensemble weighted broad learning system with AdaBoost[J]. Computer Engineering, 2020, 48(4): 99-105, 112. | 
																													
																						| 16 | 郭威,徐涛.基于M-estimator的鲁棒宽度学习系统[J].控制与决策,2023, 38 (4): 1039-1046. | 
																													
																						|  | GUO W, XU T. M-estimator-based robust broad learning system[J]. Control and Decision, 2023, 38(4): 1039-1046. | 
																													
																						| 17 | 任长娥, 袁超, 孙彦丽, 等. 宽度学习系统研究进展[J]. 计算机应用研究, 2021, 38(8): 2258-2267. | 
																													
																						|  | REN C E, YUAN C, SUN Y L, et al. Research of broad learning system [J]. Application Research of Computers, 2021, 38(8): 2258-2267. | 
																													
																						| 18 | HUANG G-B, ZHU Q-Y, C-K SIEW. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70(1/2/3): 489-501. | 
																													
																						| 19 | BEN-ISRAEL A, GREVILLE T N E. Generalized Inverses: Theory And Applications[M]. New York: Springer-Verlag, 2003:56-98. | 
																													
																						| 20 | LV Y, LI B, YU J, et al. Reduce training error of extreme learning machine by selecting appropriate hidden layer output matrix[J]. Journal of Systems Science and Systems Engineering, 2021, 30: 552-571. | 
																													
																						| 21 | LeCUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2004: 97-104. | 
																													
																						| 22 | BACHE K, LICHMAN M. UCI machine learning repository[DB/OL]. (2013-10-10) [2023-10-01]. . |