《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (1): 204-213.DOI: 10.11772/j.issn.1001-9081.2023121726
收稿日期:
2023-12-15
修回日期:
2024-02-27
接受日期:
2024-03-04
发布日期:
2024-04-10
出版日期:
2025-01-10
通讯作者:
黄颖
作者简介:
李昌盛(1999—),男,河南信阳人,硕士研究生,主要研究方向:多曝光图像融合;
Ying HUANG1,2(), Changsheng LI1, Hui PENG2, Su LIU2
Received:
2023-12-15
Revised:
2024-02-27
Accepted:
2024-03-04
Online:
2024-04-10
Published:
2025-01-10
Contact:
Ying HUANG
About author:
LI Changsheng, born in 1999, M. S. candidate. His research interests include multi-exposure image fusion.摘要:
针对基于多张曝光图像序列的高动态范围(HDR)成像任务在相机抖动或拍摄主体移动时出现运动伪影以及曝光失真的问题,提出一个用于动态场景HDR成像的局部熵引导的双分支网络。首先,利用离散小波变换(DWT)分离出输入图像的低频光照相关信息以及高频运动相关信息,以便于网络有针对性地处理曝光以及主体移动;其次,对于低频光照相关信息分支,设计一个利用图像局部熵计算注意力的模块来引导网络减少细节不足的曝光特征的提取;对于高频运动相关信息分支,引入一个轻量级的特征对齐模块来进行场景的一致性对齐,从而减少运动特征的提取;最后,结合通道注意力构建时域自注意力模块,从而加强曝光图像序列在时间域之间的相互依赖关系,以进一步提高结果质量。在公开数据集Kalantari、Sen、Tursun上进行评估。在Kalantari数据集上的实验结果表明,与最新的一些方法对比,所提网络以PSNR-l为42.20 dB的成绩取得第一,SSIM-l为0.988 9的成绩取得第三。结合其余数据集上的实验结果可知,所提网络可以有效减少曝光失真以及运动伪影,并生成细节多、视觉效果佳的图像。
中图分类号:
黄颖, 李昌盛, 彭慧, 刘苏. 用于动态场景高动态范围成像的局部熵引导的双分支网络[J]. 计算机应用, 2025, 45(1): 204-213.
Ying HUANG, Changsheng LI, Hui PENG, Su LIU. Dual-branch network guided by local entropy for dynamic scene high dynamic range imaging[J]. Journal of Computer Applications, 2025, 45(1): 204-213.
网络 | 评价指标 | 计算时间/s | 参数量/106 | |||
---|---|---|---|---|---|---|
PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |||
文献[ | 40.80 | 38.11 | 0.980 8 | 0.972 1 | 73.96 | 0.00 |
文献[ | 35.79 | 30.76 | 0.971 7 | 0.950 3 | — | — |
文献[ | 42.67 | 41.23 | 0.988 8 | 0.984 6 | 32.79 | 0.38 |
文献[ | 41.65 | 40.88 | 0.986 0 | 0.985 8 | 0.18 | 20.40 |
文献[ | 42.41 | 41.43 | 0.987 7 | 0.985 7 | 0.16 | 38.10 |
文献[ | 43.63 | 41.14 | 0.990 0 | 0.970 2 | 0.53 | 1.52 |
文献[ | 43.92 | 41.57 | 0.990 5 | 0.986 5 | 0.26 | 2.56 |
文献[ | 44.06 | 41.57 | 0.990 7 | 0.986 7 | — | — |
文献[ | 43.05 | 41.33 | 0.989 6 | 0.986 6 | — | — |
文献[ | 43.96 | 41.67 | 0.60 | 7.46 | ||
文献[ | 44.09 | 41.70 | 0.990 9 | 0.987 2 | — | — |
文献[ | 0.991 6 | 0.988 4 | 0.16 | 1.22 | ||
文献[ | 44.63 | 42.12 | 0.993 2 | 0.991 0 | — | — |
本文网络 | 43.43 | 42.20 | 0.991 4 | 0.988 9 | 1.13 | 2.35 |
表1 评价指标与计算复杂度
Tab. 1 Evaluation indexes and computational complexity
网络 | 评价指标 | 计算时间/s | 参数量/106 | |||
---|---|---|---|---|---|---|
PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |||
文献[ | 40.80 | 38.11 | 0.980 8 | 0.972 1 | 73.96 | 0.00 |
文献[ | 35.79 | 30.76 | 0.971 7 | 0.950 3 | — | — |
文献[ | 42.67 | 41.23 | 0.988 8 | 0.984 6 | 32.79 | 0.38 |
文献[ | 41.65 | 40.88 | 0.986 0 | 0.985 8 | 0.18 | 20.40 |
文献[ | 42.41 | 41.43 | 0.987 7 | 0.985 7 | 0.16 | 38.10 |
文献[ | 43.63 | 41.14 | 0.990 0 | 0.970 2 | 0.53 | 1.52 |
文献[ | 43.92 | 41.57 | 0.990 5 | 0.986 5 | 0.26 | 2.56 |
文献[ | 44.06 | 41.57 | 0.990 7 | 0.986 7 | — | — |
文献[ | 43.05 | 41.33 | 0.989 6 | 0.986 6 | — | — |
文献[ | 43.96 | 41.67 | 0.60 | 7.46 | ||
文献[ | 44.09 | 41.70 | 0.990 9 | 0.987 2 | — | — |
文献[ | 0.991 6 | 0.988 4 | 0.16 | 1.22 | ||
文献[ | 44.63 | 42.12 | 0.993 2 | 0.991 0 | — | — |
本文网络 | 43.43 | 42.20 | 0.991 4 | 0.988 9 | 1.13 | 2.35 |
变体 | 评价指标 | |||
---|---|---|---|---|
PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |
基线 | 42.98 | 41.59 | 0.991 1 | 0.987 6 |
变体1 | 43.18 | 41.99 | 0.990 8 | 0.987 6 |
变体2 | 43.38 | 42.06 | 0.991 4 | 0.988 0 |
变体3 | 43.14 | 41.94 | 0.991 3 | 0.987 5 |
变体4 | 43.40 | 41.90 | 0.991 4 | 0.988 7 |
变体5 | 43.43 | 42.20 | 0.991 4 | 0.988 9 |
表2 变体的定量比较
Tab. 2 Quantitative comparison of variants
变体 | 评价指标 | |||
---|---|---|---|---|
PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |
基线 | 42.98 | 41.59 | 0.991 1 | 0.987 6 |
变体1 | 43.18 | 41.99 | 0.990 8 | 0.987 6 |
变体2 | 43.38 | 42.06 | 0.991 4 | 0.988 0 |
变体3 | 43.14 | 41.94 | 0.991 3 | 0.987 5 |
变体4 | 43.40 | 41.90 | 0.991 4 | 0.988 7 |
变体5 | 43.43 | 42.20 | 0.991 4 | 0.988 9 |
1 | FROEHLICH J, GRANDINETTI S, EBERHARDT B, et al. Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays [C]// Proceedings of the SPIE 9023, Digital Photography X. Bellingham, WA: SPIE, 2014: No.90230X. |
2 | TOCCI M D, KISER C, TOCCI N, et al. A versatile HDR video production system [J]. ACM Transactions on Graphics, 2011, 30(4): No.41. |
3 | 刘颖,王凤伟,刘卫华,等.基于亮度分区模糊融合的高动态范围成像算法[J].计算机应用, 2020, 40(1): 233-238. |
LIU Y, WANG F W, LIU W H, et al. High dynamic range imaging algorithm based on luminance partition fuzzy fusion [J]. Journal of Computer Applications, 2020, 40(1): 233-238. | |
4 | MA K, DUANMU Z, ZHU H, et al. Deep guided learning for fast multi-exposure image fusion [J]. IEEE Transactions on Image Processing, 2020, 29: 2808-2819. |
5 | MA K, LI H, YONG H, et al. Robust multi-exposure image fusion: a structural patch decomposition approach [J]. IEEE Transactions on Image Processing, 2017, 26(5): 2519-2532. |
6 | PRABHAKAR K R, SRIKAR V S, BABU R V. DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4724-4732. |
7 | WANG L, YOON K J. Deep learning for HDR imaging: state-of-the-art and future trends [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8874-8895. |
8 | KALANTARI N K, RAMAMOORTHI R. Deep high dynamic range imaging of dynamic scenes [J]. ACM Transactions on Graphics, 2017, 36(4): No.144. |
9 | PRABHAKAR K R, ARORA R, SWAMINATHAN A, et al. A fast, scalable, and reliable deghosting method for extreme exposure fusion [C]// Proceedings of the 2019 IEEE International Conference on Computational Photography. Piscataway: IEEE, 2019: 1-8. |
10 | DAI J, QI H, XIONG Y, et al. Deformable convolutional networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773. |
11 | TAN X, CHEN H, XU K, et al. High dynamic range imaging for dynamic scenes with large-scale motions and severe saturation [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.5003415. |
12 | MARÍN-VEGA J, SLOTH M, SCHNEIDER-KAMP P, et al. DRHDR: a dual branch residual network for multi-bracket high dynamic range imaging [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 843-851. |
13 | HASINOFF S W, SHARLET D, GEISS R, et al. Burst photography for high dynamic range and low-light imaging on mobile cameras [J]. ACM Transactions on Graphics, 2016, 35(6): No.192. |
14 | POULI T, BOITARD R, CHAMARET C, et al. HDR in the living room [C]// ACM SIGGRAPH 2014 Studio. New York: ACM, 2014: No.5. |
15 | WANG X, YU K, DONG C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 606-615. |
16 | BOGONI L. Extending dynamic range of monochrome and color images through fusion [C]// Proceedings of the 15th International Conference on Pattern Recognition, Volume 3. Piscataway: IEEE, 2000: 7-12. |
17 | SEN P, KALANTARI N K, YAESOUBI M, et al. Robust patch-based HDR reconstruction of dynamic scenes [J]. ACM Transactions on Graphics, 2012, 31(6): No.203. |
18 | ZIMMER H, BRUHN A, WEICKERT J. Freehand HDR imaging of moving scenes with simultaneous resolution enhancement [J]. Computer Graphics Forum, 2011, 30(2): 405-414. |
19 | HU J, GALLO O, PULLI K, et al. HDR deghosting: how to deal with saturation? [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 1163-1170. |
20 | WU S, XU J, TAI Y W, et al. Deep high dynamic range imaging with large foreground motions [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11206. Cham: Springer, 2018: 120-135. |
21 | WANG X, GIRSHICK R, GUPTA, et al. Non-local neural networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. |
22 | YAN Q, ZHANG L, LIU Y, et al. Deep HDR imaging via a non-local network [J]. IEEE Transactions on Image Processing, 2020, 29: 4308-4322. |
23 | NIU Y, WU J, LIU W, et al. HDR-GAN: HDR image reconstruction from multi-exposed LDR images with large motions [J]. IEEE Transactions on Image Processing, 2021, 30: 3885-3896. |
24 | LAND E H, McCANN J J. Lightness and Retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. |
25 | WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement [C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.451. |
26 | WU K, CHEN J, MA J. DMEF: multi-exposure image fusion based on a novel deep decomposition method [J]. IEEE Transactions on Multimedia, 2023, 25: 5690-5703. |
27 | 王克强,张雨帅,王保群.基于Retinex理论的多曝光图像融合算法[J].计算机应用, 2019, 39(7): 2087-2092. |
WANG K Q, ZHANG Y S, WANG B Q. Multi-exposure image fusion algorithm based on Retinex theory [J]. Journal of Computer Applications, 2019, 39(7): 2087-2092. | |
28 | SINGH S, SINGH H, GEHLOT A, et al. IR and visible image fusion using DWT and bilateral filter [J]. Microsystem Technologies, 2023, 29(4): 457-467. |
29 | LI Q, SHEN L, GUO S, et al. WaveCNet: wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification [J]. IEEE Transactions on Image Processing, 2021, 30: 7074-7089. |
30 | XU J, YUAN M, YAN D M, et al. Illumination guided attentive wavelet network for low-light image enhancement [J]. IEEE Transactions on Multimedia, 2023, 25: 6258-6271. |
31 | JI Z, JUNG C. Subband adaptive enhancement of low light images using wavelet-based convolutional neural networks [C]// Proceedings of the 2021 IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 1669-1673. |
32 | FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149. |
33 | ZHAO H, JIA J, KOLTUN V. Exploring self-attention for image recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10073-10082. |
34 | 刘辉,张琳玉,王复港,等.基于注意力机制和上下文信息的目标检测算法[J].计算机应用, 2023, 43(5): 1557-1564. |
LIU H, ZHANG L Y, WANG F G, et al. Object detection algorithm based on attention mechanism and context information [J]. Journal of Computer Applications, 2023, 43(5): 1557-1564. | |
35 | DAI W, WANG K. An image edge detection algorithm based on local entropy [C]// Proceedings of the 2007 IEEE International Conference on Integration Technology. Piscataway: IEEE, 2007: 418-420. |
36 | YAN Q, GONG D, SHI Q, et al. Attention-guided network for ghost-free high dynamic range imaging [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1751-1760. |
37 | LIU L, LIU J, YUAN S, et al. Wavelet-based dual-branch network for image demoiréing [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12358. Cham: Springer, 2020: 86-102. |
38 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
39 | LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using Swin Transformer [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1833-1844. |
40 | YE Q, XIAO J, LAM K M, et al. Progressive and selective fusion network for high dynamic range imaging [C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 5290-5297. |
41 | HUANG Y M, CHIANG J C, CHEN S G. HDR-AGAN: ghost-free high dynamic range imaging with attention guided adversarial network [C]// Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 3316-3320. |
42 | SONG J W, PARK Y I, KONG K, et al. Selective TransHDR: Transformer-based selective HDR imaging using ghost region mask [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13677. Cham: Springer, 2022: 288-304. |
43 | LIU Z, WANG Y, ZENG B, et al. Ghost-free high dynamic range imaging with context-aware Transformer [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13679. Cham: Springer, 2022: 344-360. |
44 | REN H, FAN Y, HUANG S. Robust real-world image enhancement based on multi-exposure LDR images [C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 1715-1723. |
45 | TURSUN O T, AKYÜZ A O, ERDEM A, et al. An objective deghosting quality metric for HDR images [J]. Computer Graphics Forum, 2016, 35(2): 139-152. |
[1] | 徐杰, 钟勇, 王阳, 张昌福, 杨观赐. 基于上下文通道注意力机制的人脸属性估计与表情识别[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 253-260. |
[2] | 陈俊颖, 郭士杰, 陈玲玲. 基于解耦注意力与幻影卷积的轻量级人体姿态估计[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 223-233. |
[3] | 王丽芳, 吴荆双, 尹鹏亮, 胡立华. 基于注意力机制和能量函数的动作识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 234-239. |
[4] | 宋鹏程, 郭立君, 张荣. 利用局部-全局时间依赖的弱监督视频异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 240-246. |
[5] | 张嘉琳, 任庆桦, 毛启容. 利用全局-局部特征依赖的反欺骗说话人验证系统[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 308-317. |
[6] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[7] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[8] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[9] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[10] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[11] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[12] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[13] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[14] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[15] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||