《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (1): 308-317.DOI: 10.11772/j.issn.1001-9081.2023121877
收稿日期:
2024-01-06
修回日期:
2024-02-27
接受日期:
2024-03-04
发布日期:
2024-04-01
出版日期:
2025-01-10
通讯作者:
毛启容
作者简介:
张嘉琳(1998—),男,山东莱州人,硕士研究生,主要研究方向:合成语音检测;基金资助:
Jialin ZHANG1, Qinghua REN1, Qirong MAO1,2()
Received:
2024-01-06
Revised:
2024-02-27
Accepted:
2024-03-04
Online:
2024-04-01
Published:
2025-01-10
Contact:
Qirong MAO
About author:
ZHANG Jialin, born in 1998, M. S. candidate. His research interests include synthetic speech detection.Supported by:
摘要:
针对现有卷积模型为主的反欺骗说话人验证系统捕获全局特征依赖不理想的问题,提出一种利用全局-局部特征依赖的反欺骗说话人验证系统。首先,对于欺骗语音检测模块,设计两种滤波器组合方式对原始语音进行滤波,并通过对频率子带的掩蔽实现样本扩充;其次,提出多维全局注意力机制,通过对信道维度、频率维度和时间维度分别进行池化,获得每个维度的全局依赖关系,并将全局信息通过加权的方式与原始特征相融合;最后,在说话人验证部分引入统计金字塔池化时延神经网络(SPD-TDNN),在获取多尺度时频特征的同时计算特征的标准差,并加入全局信息。实验结果表明,与集成时频图卷积(AASIST)模型相比,在ASVspoof2019数据集上提出的欺骗语音检测系统将等错误率(EER)降低了65.4%;与单独的金字塔池化说话人验证系统相比,提出的反欺骗说话人验证系统将欺骗感知说话人验证等错误率降低了约97.8%。以上验证了所提两个模块借助全局特征依赖能实现更好的分类效果。
中图分类号:
张嘉琳, 任庆桦, 毛启容. 利用全局-局部特征依赖的反欺骗说话人验证系统[J]. 计算机应用, 2025, 45(1): 308-317.
Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing[J]. Journal of Computer Applications, 2025, 45(1): 308-317.
符号 | 含义 |
---|---|
输入的语音信号 | |
输入语音信号的标签 | |
滤波器组的滤波操作 | |
滤波分支数 | |
频带增强过程中的混合语音 | |
频带增强过程中的混合权重 | |
频带增强后的语音 | |
特征的批量值和通道数 | |
信道的权重 | |
频率维度的权重 | |
时间维度的权重 | |
表示Sigmoid操作 | |
表示两次全连接层的计算 | |
表示特征的时间维数和频率维数 | |
ReLU函数的计算 | |
频带增强的次数 | |
欺骗语音检测模型 | |
调节得分占比的权重因子 | |
平衡分类损失和一致性损失的调节因子 |
表1 符号及其含义
Tab. 1 Symbols and their meanings
符号 | 含义 |
---|---|
输入的语音信号 | |
输入语音信号的标签 | |
滤波器组的滤波操作 | |
滤波分支数 | |
频带增强过程中的混合语音 | |
频带增强过程中的混合权重 | |
频带增强后的语音 | |
特征的批量值和通道数 | |
信道的权重 | |
频率维度的权重 | |
时间维度的权重 | |
表示Sigmoid操作 | |
表示两次全连接层的计算 | |
表示特征的时间维数和频率维数 | |
ReLU函数的计算 | |
频带增强的次数 | |
欺骗语音检测模型 | |
调节得分占比的权重因子 | |
平衡分类损失和一致性损失的调节因子 |
模块名称 | 模块内容 | 输出 |
---|---|---|
Sinc卷积层 | 一维卷积+BN+SeLU | (1,23,32 090) |
残差块1 | BN+多维全局注意力+ 二维卷积+SeLU+BN+ 二维卷积 | (32,23,10 696) |
残差模块2~6 | BN+二维卷积+ SeLU+BN+二维卷积 | (64,23,44) |
时频图注意力模块 | 图注意力层+图池化+ 异构图注意力层 | (20,32) |
Dropout | (1,32) | |
全连接层 | (1) |
表2 MA-AASIST网络结构
Tab. 2 MA-AASIST network structure
模块名称 | 模块内容 | 输出 |
---|---|---|
Sinc卷积层 | 一维卷积+BN+SeLU | (1,23,32 090) |
残差块1 | BN+多维全局注意力+ 二维卷积+SeLU+BN+ 二维卷积 | (32,23,10 696) |
残差模块2~6 | BN+二维卷积+ SeLU+BN+二维卷积 | (64,23,44) |
时频图注意力模块 | 图注意力层+图池化+ 异构图注意力层 | (20,32) |
Dropout | (1,32) | |
全连接层 | (1) |
模块序号 | 模块名称 | 输出 |
---|---|---|
1 | 一维卷积+BN+ReLU | 128 |
2 | SPD-TDNN | 192 |
SPD-TDNN | 256 | |
SPD-TDNN | 320 | |
SPD-TDNN | 384 | |
SPD-TDNN | 448 | |
SPD-TDNN | 512 | |
一维卷积+BN+ReLU | 256 | |
SPD-TDNN | 320 | |
SPD-TDNN | 384 | |
SPD-TDNN | 448 | |
SPD-TDNN | 512 | |
SPD-TDNN | 576 | |
SPD-TDNN | 640 | |
SPD-TDNN | 704 | |
SPD-TDNN | 768 | |
SPD-TDNN | 832 | |
SPD-TDNN | 896 | |
SPD-TDNN | 960 | |
SPD-TDNN | 1 024 | |
一维卷积+BN+ReLU | 512 | |
3 | 统计池化+BN | 1 024 |
4 | 全连接层+BN | 128 |
表3 SPD-TDNN各层卷积通道数
Tab. 3 Convolutional channel numbers of layers in SPD-TDNN
模块序号 | 模块名称 | 输出 |
---|---|---|
1 | 一维卷积+BN+ReLU | 128 |
2 | SPD-TDNN | 192 |
SPD-TDNN | 256 | |
SPD-TDNN | 320 | |
SPD-TDNN | 384 | |
SPD-TDNN | 448 | |
SPD-TDNN | 512 | |
一维卷积+BN+ReLU | 256 | |
SPD-TDNN | 320 | |
SPD-TDNN | 384 | |
SPD-TDNN | 448 | |
SPD-TDNN | 512 | |
SPD-TDNN | 576 | |
SPD-TDNN | 640 | |
SPD-TDNN | 704 | |
SPD-TDNN | 768 | |
SPD-TDNN | 832 | |
SPD-TDNN | 896 | |
SPD-TDNN | 960 | |
SPD-TDNN | 1 024 | |
一维卷积+BN+ReLU | 512 | |
3 | 统计池化+BN | 1 024 |
4 | 全连接层+BN | 128 |
数据集 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
真实 | 欺骗 | 真实 | 欺骗 | 真实 | 欺骗 | |
ASVspoof2019 | 2 580 | 22 800 | 2 548 | 22 296 | 7 355 | 63 882 |
ASVspoof2021 | 2 580 | 22 800 | 2 548 | 22 296 | 14 816 | 133 360 |
表4 实验中使用的ASVspoof数据集
Tab. 4 ASVspoof dataset used in experiments
数据集 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
真实 | 欺骗 | 真实 | 欺骗 | 真实 | 欺骗 | |
ASVspoof2019 | 2 580 | 22 800 | 2 548 | 22 296 | 7 355 | 63 882 |
ASVspoof2021 | 2 580 | 22 800 | 2 548 | 22 296 | 14 816 | 133 360 |
EER/% | EER/% | ||
---|---|---|---|
100 | 0.53 | 10-3 | 0.39 |
10-1 | 0.36 | 0 | 0.55 |
10-2 | 0.43 |
表5 在ASVspoof2019数据集中关于λ的消融实验结果
Tab. 5 Ablation experimental results about λ on ASVspoof2019 dataset
EER/% | EER/% | ||
---|---|---|---|
100 | 0.53 | 10-3 | 0.39 |
10-1 | 0.36 | 0 | 0.55 |
10-2 | 0.43 |
系统 | 增强手段 | 损失函数 | ASVspoof2019 | ASVspoof2021 | |||||
---|---|---|---|---|---|---|---|---|---|
无 | 仅滤波 (带通) | 滤波后混合 (带通) | 完整频带增强 (带通/低通高通) | 一致性损失 | EER/% | t-DCF | EER/% | t-DCF | |
AASIST[ | ✓ | 1.04 | 0.031 7 | 6.24 | 0.342 8 | ||||
✓ | 0.84 | 0.023 5 | 4.25 | 0.276 8 | |||||
✓ | 0.84 | 0.026 0 | 3.74 | 0.268 4 | |||||
✓(带通) | 0.57 | 0.019 3 | 4.25 | 0.291 3 | |||||
AASIST | ✓(带通) | ✓ | 0.38 | 0.012 0 | 3.29 | 0.270 7 | |||
MA-AASIST | ✓(带通) | ✓ | 0.36 | 0.011 4 | 4.63 | 0.302 6 | |||
AASIST | ✓(低通高通) | ✓ | 0.51 | 0.016 6 | 3.07 | 0.264 6 | |||
MA-AASIST | ✓(低通高通) | ✓ | 0.49 | 0.014 9 | 2.68 | 0.251 4 |
表6 消融实验结果
Tab. 6 Results of ablation experiments
系统 | 增强手段 | 损失函数 | ASVspoof2019 | ASVspoof2021 | |||||
---|---|---|---|---|---|---|---|---|---|
无 | 仅滤波 (带通) | 滤波后混合 (带通) | 完整频带增强 (带通/低通高通) | 一致性损失 | EER/% | t-DCF | EER/% | t-DCF | |
AASIST[ | ✓ | 1.04 | 0.031 7 | 6.24 | 0.342 8 | ||||
✓ | 0.84 | 0.023 5 | 4.25 | 0.276 8 | |||||
✓ | 0.84 | 0.026 0 | 3.74 | 0.268 4 | |||||
✓(带通) | 0.57 | 0.019 3 | 4.25 | 0.291 3 | |||||
AASIST | ✓(带通) | ✓ | 0.38 | 0.012 0 | 3.29 | 0.270 7 | |||
MA-AASIST | ✓(带通) | ✓ | 0.36 | 0.011 4 | 4.63 | 0.302 6 | |||
AASIST | ✓(低通高通) | ✓ | 0.51 | 0.016 6 | 3.07 | 0.264 6 | |||
MA-AASIST | ✓(低通高通) | ✓ | 0.49 | 0.014 9 | 2.68 | 0.251 4 |
EER/% | ||
---|---|---|
ASVspoof2019测试集 | ASVspoof2021测试集 | |
0 | 1.04 | 6.24 |
1 | 0.42 | 4.13 |
2 | 0.53 | 4.13 |
3 | 0.38 | 3.29 |
4 | 0.97 | 4.82 |
表7 滤波分支数K的选取
Tab. 7 Selection of filter branch number K
EER/% | ||
---|---|---|
ASVspoof2019测试集 | ASVspoof2021测试集 | |
0 | 1.04 | 6.24 |
1 | 0.42 | 4.13 |
2 | 0.53 | 4.13 |
3 | 0.38 | 3.29 |
4 | 0.97 | 4.82 |
系统 | ASVspoof2019 | ASVspoof2021 | ||
---|---|---|---|---|
EER/% | t-DCF | EER/% | t-DCF | |
MA-AASIST(带通) | 0.36 | 0.011 4 | 4.63 | 0.302 6 |
MA-AASIST(低通高通) | 0.49 | 0.014 9 | 2.68 | 0.251 4 |
DFSincNet[ | 0.52 | 0.017 6 | 3.05 | 0.260 1 |
GST+GCN[ | 0.58 | 0.016 6 | ||
Rawformer[ | 0.59 | 0.018 4 | 4.53 | 0.308 8 |
To-AASIST[ | 1.02 | |||
To-RawNet[ | 3.58 | |||
CNN+Transformer[ | 1.61 | 0.048 1 |
表8 所提欺骗检测模型与当前先进系统的比较
Tab. 8 Comparison of proposed spoofing detection system with current advanced models
系统 | ASVspoof2019 | ASVspoof2021 | ||
---|---|---|---|---|
EER/% | t-DCF | EER/% | t-DCF | |
MA-AASIST(带通) | 0.36 | 0.011 4 | 4.63 | 0.302 6 |
MA-AASIST(低通高通) | 0.49 | 0.014 9 | 2.68 | 0.251 4 |
DFSincNet[ | 0.52 | 0.017 6 | 3.05 | 0.260 1 |
GST+GCN[ | 0.58 | 0.016 6 | ||
Rawformer[ | 0.59 | 0.018 4 | 4.53 | 0.308 8 |
To-AASIST[ | 1.02 | |||
To-RawNet[ | 3.58 | |||
CNN+Transformer[ | 1.61 | 0.048 1 |
系统 | SASV_EER | SV_EER | SPF_EER |
---|---|---|---|
MA-AASIST | 25.14 | 49.49 | 0.29 |
SPD-TDNN | 24.37 | 0.63 | 32.26 |
MA-AASIST+SPD-TDNN | 0.64 | 0.87 | 0.28 |
MA-AASIST+SPD-TDNN(std)+权重规整 | 0.54 | 0.74 | 0.19 |
I_Aug[ | 0.73 | 1.10 | 0.42 |
End-to-End SASV[ | 6.83 | 4.43 | 8.36 |
SA-SASV[ | 4.86 | 8.06 | 0.50 |
TDT-1[ | 4.78 | 6.24 | 1.73 |
TAP-1024[ | 0.97 | 1.15 | 0.56 |
CLIPS System[ | 1.36 | 1.75 | 0.76 |
表9 反欺骗说话人验证系统的得分融合结果 ( %)
Tab. 9 Score fusion results of speaker verification system for anti-spoofing
系统 | SASV_EER | SV_EER | SPF_EER |
---|---|---|---|
MA-AASIST | 25.14 | 49.49 | 0.29 |
SPD-TDNN | 24.37 | 0.63 | 32.26 |
MA-AASIST+SPD-TDNN | 0.64 | 0.87 | 0.28 |
MA-AASIST+SPD-TDNN(std)+权重规整 | 0.54 | 0.74 | 0.19 |
I_Aug[ | 0.73 | 1.10 | 0.42 |
End-to-End SASV[ | 6.83 | 4.43 | 8.36 |
SA-SASV[ | 4.86 | 8.06 | 0.50 |
TDT-1[ | 4.78 | 6.24 | 1.73 |
TAP-1024[ | 0.97 | 1.15 | 0.56 |
CLIPS System[ | 1.36 | 1.75 | 0.76 |
1 | JUNG J W, TAK H, SHIM H J, et al. SASV 2022: the first spoofing-aware speaker verification challenge [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 2893-2897. |
2 | TA B T, NGUYEN T L, DANG D S, et al. A multi-task conformer for spoofing aware speaker verification [C]// Proceedings of the IEEE 9th International Conference on Communications and Electronics. Piscataway: IEEE, 2022: 306-310. |
3 | KANG W, ALAM M J, FATHAN A. End-to-end framework for spoof-aware speaker verification [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4362-4366. |
4 | HE K, WANG Z, FU Y, et al. Adaptively weighted multi-task deep network for person attribute classification [C]// Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 1636-1644. |
5 | ZHANG L, LI Y, ZHAO H, et al. Backend ensemble for speaker verification and spoofing countermeasure [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4381-4385. |
6 | ZHANG P, HU P, ZHANG X. Norm-constrained score-level ensemble for spoofing aware speaker verification [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4371-4375. |
7 | TODISCO M, DELGADO H, LEE K A, et al. Integrated presentation attack detection and automatic speaker verification: common features and Gaussian back-end fusion [C]// Proceedings of the INTERSPEECH 2018. [S.l.]: International Speech Communication Association, 2018: 77-81. |
8 | DESPLANQUES B, THIENPONDT J, DEMUYNCK K. ECAPA-TDNN: emphasized channel attention, propagation and aggregation in TDNN based speaker verification [C]// Proceedings of the INTERSPEECH 2020. [S.l.]: International Speech Communication Association, 2020: 3830-3834. |
9 | YU Y Q, LI W J. Densely connected time delay neural network for speaker verification [C]// Proceedings of the INTERSPEECH 2020. [S.l.]: International Speech Communication Association, 2020: 921-925. |
10 | ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs [EB/OL]. [2023-12-01]. . |
11 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
12 | JUNG J W, HEO H S, TAK H, et al. AASIST: audio anti-spoofing using integrated spectro-temporal graph attention networks [C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 6367-6371. |
13 | 方昕,黄泽鑫,张聿晗,等.基于时域波形的半监督端到端虚假语音检测方法[J].计算机应用, 2023, 43(1): 227-231. |
FANG X, HUANG Z X, ZHANG Y H, et al. Semi-supervised end-to-end fake speech detection method based on time-domain waveforms [J]. Journal of Computer Applications, 2023, 43(1): 227-231. | |
14 | ZHANG Y, WANG W, ZHANG P. The effect of silence and dual-band fusion in anti-spoofing system [C]// Proceedings of the INTERSPEECH 2021. [S.l.]: International Speech Communication Association, 2021: 4279-4283. |
15 | HUANG B, CUI S, HUANG J, et al. Discriminative frequency information learning for end-to-end speech anti-spoofing [J]. IEEE Signal Processing Letters, 2023, 30: 185-189. |
16 | WAN Z K, REN Q H, QIN Y C, et al. Statistical pyramid dense time delay neural network for speaker verification [C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 7532-7536. |
17 | CHEN F, DENG S, ZHENG T, et al. Graph-based spectro-temporal dependency modeling for anti-spoofing [C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
18 | LIU X, LIU M, WANG L, et al. Leveraging positional-related local-global dependency for synthetic speech detection [C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
19 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
20 | TAK H, KAMBLE M, PATINO J, et al. RawBoost: a raw data boosting and augmentation method applied to automatic speaker verification anti-spoofing [C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 6382-6386. |
21 | DAS R K, YANG J, LI H. Data augmentation with signal companding for detection of logical access attacks [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 6349-6353. |
22 | ZHANG Y, LI Z, WANG W, et al. SASV based on pre-trained ASV system and integrated scoring module [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4376-4380. |
23 | WANG X, QIN X, WANG Y, et al. The DKU-OPPO system for the 2022 spoofing-aware speaker verification challenge [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4396-4400. |
24 | KARAM L J, McCLELLAN J H. A multiple exchange Remez algorithm for complex FIR filter design in the Chebyshev sense [C]// Proceedings of the 1994 IEEE International Symposium on Circuits and Systems — Volume 2. Piscataway: IEEE, 1994: 517-520. |
25 | 江苏大学.一种多重注意力特征融合的说话人识别方法: 202110986397.6 [P]. 2021-12-07. |
Jiangsu University. A speaker recognition method based on multiple attention feature fusion: 202110986397.6 [P]. 2021-12-07. | |
26 | NAGRANI A, CHUNG J S, ZISSERMAN A. VoxCeleb: a large-scale speaker identification dataset [C]// Proceedings of the INTERSPEECH 2017. [S.l.]: International Speech Communication Association, 2017: 2616-2620. |
27 | CHUNG J S, NAGRANI A, ZISSERMAN A. VoxCeleb2: deep speaker recognition [C]// Proceedings of the INTERSPEECH 2018. [S.l.]: International Speech Communication Association, 2018: 1086-1090. |
28 | WANG X, YAMAGISHI J, TODISCO M, et al. ASVspoof 2019: a large-scale public database of synthesized, converted and replayed speech [J]. Computer Speech and Language, 2020, 64: No.101114. |
29 | YAMAGISHI J, WANG X, TODISCO M, et al. ASVspoof 2021: accelerating progress in spoofed and deepfake speech detection [C]// Proceedings of the 2021 Automatic Speaker Verification and Spoofing Countermeasures Challenge. [S.l.]: International Speech Communication Association, 2021: 47-54. |
30 | 徐童心,黄俊.基于CNN-Transformer的欺骗语音检测[J].无线电工程, 2024, 54(5): 1091-1098. |
XU T X, HUANG J. Spoofed speech detection based on CNN-Transformer [J]. Radio Engineering, 2024, 54(5): 1091-1098. | |
31 | WANG C, YI J, TAO J, et al. TO-RawNet: improving RawNet with TCN and orthogonal regularization for fake audio detection [C]// Proceedings of the INTERSPEECH 2023. [S.l.]: International Speech Communication Association, 2023: 3137-3141. |
32 | TENG Z, FU Q, WHITE J, et al. SA-SASV: an end-to-end spoof-aggregated spoofing-aware speaker verification system [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4391-4395. |
33 | WU H, MENG L, KANG J, et al. Spoofing-aware speaker verification by multi-level fusion [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4357-4361. |
34 | LIN J, CHEN T, HUANG J, et al. The CLIPS system for 2022 spoofing-aware speaker verification challenge [C]// Proceedings of the INTERSPEECH 2022. [S.l.]: International Speech Communication Association, 2022: 4367-4370. |
[1] | 王丽芳, 吴荆双, 尹鹏亮, 胡立华. 基于注意力机制和能量函数的动作识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 234-239. |
[2] | 宋鹏程, 郭立君, 张荣. 利用局部-全局时间依赖的弱监督视频异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 240-246. |
[3] | 徐杰, 钟勇, 王阳, 张昌福, 杨观赐. 基于上下文通道注意力机制的人脸属性估计与表情识别[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 253-260. |
[4] | 陈俊颖, 郭士杰, 陈玲玲. 基于解耦注意力与幻影卷积的轻量级人体姿态估计[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 223-233. |
[5] | 黄颖, 李昌盛, 彭慧, 刘苏. 用于动态场景高动态范围成像的局部熵引导的双分支网络[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 204-213. |
[6] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[7] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[8] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[9] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[10] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[11] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[12] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[13] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[14] | 杨莹, 郝晓燕, 于丹, 马垚, 陈永乐. 面向图神经网络模型提取攻击的图数据生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2483-2492. |
[15] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||