1 |
陈子睿,王鑫,王林,等.开放领域知识图谱问答研究综述[J].计算机科学与探索, 2021, 15(10): 1843-1869.
|
|
CHEN Z R, WANG X, WANG L, et al. Survey of open-domain knowledge graph question answering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1843-1869.
|
2 |
HUANG H, WANG Y, FENG C, et al. Leveraging conceptualization for short-text embedding [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(7): 1282-1295.
|
3 |
CHEN Y, LI H, QI G, et al. Outlining and filling: hierarchical query graph generation for answering complex questions over knowledge graphs [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8343-8357.
|
4 |
HE H, BALAKRISHNAN A, ERIC M, et al. Learning symmetric collaborative dialogue agents with dynamic knowledge graph embeddings [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1766-1776.
|
5 |
YANG A, WANG Q, LIU J, et al. Enhancing pre-trained language representations with rich knowledge for machine reading comprehension [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2346-2357.
|
6 |
侯中妮,靳小龙,陈剑赟,等.知识图谱可解释推理研究综述[J].软件学报, 2022, 33(12): 4644-4667.
|
|
HOU Z N, JIN X L, CHEN J Y, et al. Survey of interpretable reasoning on knowledge graphs [J]. Journal of Software, 2022, 33(12): 4644-4667.
|
7 |
LIANG Y, XU F, ZHANG S H, et al. Knowledge graph construction with structure and parameter learning for indoor scene design [J]. Computational Visual Media, 2018, 4(2): 123-137.
|
8 |
陈跃鹤,谈川源,陈文亮,等.结合多重嵌入表示的中文知识图谱补全[J].中文信息学报, 2023, 37(1): 54-63.
|
|
CHEN Y H, TAN C Y, CHEN W L, et al. Chinese knowledge graph complementation with multiple embeddings [J]. Journal of Chinese Information Processing, 2023, 37(1): 54-63.
|
9 |
WANG Y, LIU Y, ZHANG H, et al. Leveraging lexical semantic information for learning concept-based multiple embedding representations for knowledge graph completion [C]// Proceedings of the 2019 Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, LNCS 11641. Cham: Springer, 2019: 382-397.
|
10 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 2787-2795.
|
11 |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119.
|
12 |
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2181-2187.
|
13 |
YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases [EB/OL]. [2023-11-13]. .
|
14 |
李源,马新宇,杨国利,等.面向知识图谱和大语言模型的因果关系推断综述[J].计算机科学与探索, 2023, 17(10): 2358-2376.
|
|
LI Y, MA X Y, ZHAO G L, et al. Survey of causal inference for knowledge graphs and large language models [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376.
|
15 |
LAO N, COHEN W W. Relational retrieval using a combination of path-constrained random walks [J]. Machine Learning, 2010, 81(1): 53-67.
|
16 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 809-816.
|
17 |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080.
|
18 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818.
|
19 |
BALAŽEVIĆ I, ALLEN C, HOSPEDALES T M. Hypernetwork knowledge graph embeddings [C]// Proceedings of the 2019 International Conference on Artificial Neural Networks: Workshop and Special Sessions, LNCS 11731. Cham: Springer, 2019: 553-565.
|
20 |
LE T, LE N, LE B. Knowledge graph embedding by relational rotation and complex convolution for link prediction [J]. Expert Systems with Applications, 2023, 214: No.119122.
|
21 |
XIONG B, ZHU S, NAYYERI M, et al. Ultrahyperbolic knowledge graph embeddings [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 2130-2139.
|
22 |
WANG Q, LIU J, LUO Y, et al. Knowledge base completion via coupled path ranking [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1308-1318.
|
23 |
NEELAKANTAN A, ROTH B, McCALLUM A. Compositional vector space models for knowledge base inference [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 156-166.
|
24 |
McCALLUM A, NEELAKANTAN A, BELANGER D, et al. Chains of reasoning over entities, relations, and text using recurrent neural networks [C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg: ACL, 2017: 132-141.
|
25 |
JAGVARAL B, LEE W K, ROH J S, et al. Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism [J]. Expert Systems with Applications, 2020, 142: No.112960.
|
26 |
XIONG W, HOANG T L G, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573.
|
27 |
DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning [EB/OL]. [2023-11-13]. .
|
28 |
LI S, WANG H, PAN R, et al. MemoryPath: a deep reinforcement learning framework for incorporating memory component into knowledge graph reasoning [J]. Neurocomputing, 2021, 419: 273-286.
|
29 |
BALLOCCU G, BORATTO L, FENU G, et al. Reinforcement recommendation reasoning through knowledge graphs for explanation path quality [J]. Knowledge-Based Systems, 2023, 260: No.110098.
|
30 |
SHEN Y, DING N, ZHENG H T, et al. Modeling relation paths for knowledge graph completion [J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(11): 3607-3617.
|
31 |
LI C, PENG X, ZHANG S, et al. Modeling relation paths for knowledge base completion via joint adversarial training [J]. Knowledge-Based Systems, 2020, 201/202: No.105865.
|
32 |
WANG Y, XIAO W, TAN Z, et al. Caps-OWKG: a capsule network model for open-world knowledge graph [J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6): 1627-1637.
|
33 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the 2018 European Semantic Web Conference, LNCS 10843. Cham: Springer, 2018: 593-607.
|
34 |
TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference [C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66.
|