| 1 | CHEN Y, XU L, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 167-176. | 
																													
																						| 2 | DIEFENBACH D, LOPEZ V, SINGH K, et al. Core techniques of question answering systems over knowledge bases: a survey[J]. Knowledge And Information Systems, 2018, 55(3): 529-569. | 
																													
																						| 3 | ZHOU Q, YANG N, WEI F, et al. Neural question generation from text: a preliminary study [C]// Proceedings of the 2017 CCF International Conference on Natural Language Processing and Chinese Computing, LNCS 10619. Cham: Springer, 2018: 662-671. | 
																													
																						| 4 | LE P, TITOV I. Improving entity linking by modeling latent relations between mentions [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 1595-1604. | 
																													
																						| 5 | HOU F, WANG R, HE J, et al. Improving entity linking through semantic reinforced entity embeddings [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6843-6848. | 
																													
																						| 6 | ZENG G, ZANG C, XIAO B, et al. CRFs-based Chinese named entity recognition with improved tag set [C]// Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering. Piscataway: IEEE, 2009: 519-522. | 
																													
																						| 7 | 雷景生,剌凯俊,杨胜英,等. 基于上下文语义增强的实体关系联合抽取[J]. 计算机应用, 2023, 43(5): 1438-1444. | 
																													
																						|  | LEI J S, LA K J, YANG S Y, et al. Joint entity and relation extraction based on contextual semantic enhancement[J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. | 
																													
																						| 8 | 徐关友,冯伟森. 基于Transformer的Python命名实体识别模型[J]. 计算机应用, 2022, 42(9): 2693-2700. | 
																													
																						|  | XU G Y, FENG W S. Python named entity recognition model based on Transformer[J]. Journal of Computer Applications, 2022, 42(9): 2693-2700. | 
																													
																						| 9 | HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems, 1998, 13(4): 18-28. | 
																													
																						| 10 | SONG C H, LAWRIE D, FININ T, et al. Improving neural named entity recognition with gazetteers [C]// Proceedings of the 33rd International FLAIRS Conference. Palo Alto: AAAI Press, 2020: 1-8. | 
																													
																						| 11 | JIANG B, WU Z, KARIMI H R. A distributed dynamic event-triggered mechanism to HMM-based observer design for H∞ sliding mode control of Markov jump systems[J]. Automatica, 2022, 142: No.110357. | 
																													
																						| 12 | DONG C, ZHANG J, ZONG C, et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition [C]// Proceedings of the 5th CCF Conference on Natural Language Processing and Chinese Computing Conference and 24th International Conference on Computer Processing of Oriental Languages, LNCS 10102. Cham: Springer, 2016: 239-250. | 
																													
																						| 13 | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2023-07-24]. . | 
																													
																						| 14 | WU F, LIU J, WU C, et al. Neural Chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3342-3348. | 
																													
																						| 15 | ZHANG Y, YANG J. Chinese NER using lattice LSTM [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 1554-1564. | 
																													
																						| 16 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
																													
																						| 17 | ZHU Y, WANG G. CAN-NER: convolutional attention network for Chinese named entity recognition [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 3384-3393. | 
																													
																						| 18 | GUI T, ZOU Y, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 1040-1050. | 
																													
																						| 19 | LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice Transformer [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6836-6842. | 
																													
																						| 20 | MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistic. Stroudsburg: ACL, 2020: 5951-5960. | 
																													
																						| 21 | SONG C H, SEHANOBISH A. Using Chinese glyphs for named entity recognition (student abstract) [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 13921-13922. | 
																													
																						| 22 | XUAN Z, BAO R, JIANG S. FGN: fusion glyph network for Chinese named entity recognition [C]// Proceedings of the 2020 China Conference on Knowledge Graph and Semantic Computing. Singapore: Springer, 2021: 28-40. | 
																													
																						| 23 | ZHANG S, QINN Y, WEN J, et al. Word segmentation and named entity recognition [C]// Proceedings of the 5th SIGHAN Workshop on Chinese Language Processing. Stroudsburg: ACL, 2006: 158-161. | 
																													
																						| 24 | PENG N, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 548-554. | 
																													
																						| 25 | WEISCHEDEL R, PALMER M, MARCUS M, et al. OntoNotes release 4.0: LDC2011T03[DS/OL]. [2023-09-14].. | 
																													
																						| 26 | WU S, SONG X, FENG Z, et al. NFLAT: non-flat-lattice Transformer for Chinese named entity recognition [EB/OL]. [2023-07-24].. | 
																													
																						| 27 | ZHAO S, WANG C, HU M, et al. MCL: multi-granularity contrastive learning framework for Chinese NER [J]. AAAI Technical Track on Speech & Natural Language Processing, 2023, 37(11), 14011-14019. |