《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (2): 556-562.DOI: 10.11772/j.issn.1001-9081.2024030289
• 先进计算 • 上一篇
收稿日期:2024-03-20
									
				
											修回日期:2024-04-23
									
				
											接受日期:2024-04-24
									
				
											发布日期:2024-05-21
									
				
											出版日期:2025-02-10
									
				
			通讯作者:
					游泳
							作者简介:符五久(1956—),男,安徽无为人,教授,主要研究方向:混沌动力学
        
                                                                                                                            Wujiu FU, Lin ZHOU, Jianjie DENG, Yong YOU( )
)
			  
			
			
			
                
        
    
Received:2024-03-20
									
				
											Revised:2024-04-23
									
				
											Accepted:2024-04-24
									
				
											Online:2024-05-21
									
				
											Published:2025-02-10
									
			Contact:
					Yong YOU   
							About author:FU Wujiu, born in 1956, professor. His research interests include chaotic dynamics.摘要:
对分数阶微分动力学系统进行数值计算时,直接离散微分方程存在长时程储存困难。为解决这一问题,首先,将微分方程做一次积分,然后再离散化;同时,给出一个递推公式,并讨论它的适用条件。用该递推公式计算一些常见的非线性问题所得的结果都与其他数值方法的结果一致。由于二维分数阶连续动力学系统是否有混沌运动尚未有定论,应用这个递推公式对二维连续耦合Logistic模型进行研究,发现该系统仅由平衡点通过Hopf分岔产生极限环,不存在混沌运动。最后,给出分数阶二维连续Logistic系统运动的李雅普诺夫指数判据。
中图分类号:
符五久, 周林, 邓建杰, 游泳. 分数阶自治动力学系统初值问题的递推公式及其应用[J]. 计算机应用, 2025, 45(2): 556-562.
Wujiu FU, Lin ZHOU, Jianjie DENG, Yong YOU. Recurrence formula for initial value problems of fractional-order autonomous dynamics system and its application[J]. Journal of Computer Applications, 2025, 45(2): 556-562.
| 1 | MATHAI A M, HAUBOLD H J. Matrix methods and fractional calculus[M]. Singapore: World Scientific Publishing, 2018. | 
| 2 | ELWY O, ABDELATY A M, SAID L A, et al. Fractional calculus definitions, approximations and engineering applications[J]. Journal of Engineering and Applied Science, 2020, 67(1): 1-30. | 
| 3 | PATNAIK S, HOLLKAMP J P, SEMPERLOTTI F. Applications of variable-order fractional operators: a review[J]. Proceedings of the Royal Society A, 2020, 476(2234): No.20190498. | 
| 4 | METZLER R, KLAFTER J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77. | 
| 5 | WADHWA A, BHARDWAJ A. Enhancement of MRI images of brain tumor using Grünwald Letnikov fractional differential mask[J]. Multimedia Tools and Applications, 2020, 79(35/36): 25379-25402. | 
| 6 | XU K, LIU J, MIAO J, et al. An improved SIFT algorithm based on adaptive fractional differential[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(8): 3297-3305. | 
| 7 | PAN H, CHANG K, PAN S. Research on fingerprint image enhancement algorithm based on adaptive fractional differential[J]. IOP Conference Series: Earth and Environmental Science, 2019, 234: No.012012. | 
| 8 | BAGLEY R L, CALICO R A. Fractional order state equations for the control of viscoelastically damped structures[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 304-311. | 
| 9 | WEI Y, PETER W T, DU B, et al. An innovative fixed-pole numerical approximation for fractional order systems[J]. ISA Transactions, 2016, 62: 94-102. | 
| 10 | DEBNATH L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 2003: No.753601. | 
| 11 | WIEMAN A. Nonlinear viscoelastic solids — a review[J]. Mathematics and Mechanics of Solids, 2009, 14(3): 300-366. | 
| 12 | KOELLER R C. Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics[J]. Acta Mechanica, 1986, 58(3/4): 251-264. | 
| 13 | TANG J, NIU L, XIONG X, et al. Viscoelasticity of rubber springs affects vibration characteristics of a flip-flow screen with the high G value[J]. IEEE Access, 2020, 8: 26950-26965. | 
| 14 | RIDA S Z, FARGHALY A A, AZOZ S A, et al. Global stability of a delayed fractional-order SEI epidemic model with logistic growth[J]. Applied Mathematics and Information Sciences, 2021, 15(1): 1-12. | 
| 15 | GUO C, FANG S. Stability and approximate analytic solutions of the fractional Lotka-Volterra equations for three competitors[J]. Advances in Difference Equations, 2016, 2016: No.219. | 
| 16 | ELSADANY A A, MATOUK A E. Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization[J]. Journal of Applied Mathematics and Computing, 2015, 49(1/2): 269-283. | 
| 17 | AGARWAL R P, BELMEKKI M, BENCHOHRA M. Existence results for semilinear functional differential inclusions involving Riemann-Liouville fractional derivative[J]. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 2010, 17(3): 347-361. | 
| 18 | AGARWAL R P, BENCHOHRA M, HAMANI S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions[J]. Acta Applicandae Mathematicae, 2010, 109: 973-1033. | 
| 19 | DHAGE B C. Existence of extremal solutions for discontinuous functional integral equations[J]. Applied Mathematics Letters, 2006, 19(9): 881-886. | 
| 20 | DHAGE B C. Hybrid fixed point theory for strictly monotone increasing multi-valued mappings with applications[J]. Computers and Mathematics with Applications, 2007, 53(5): 803-824. | 
| 21 | LAKSHMIKANTHAM V. Theory of fractional functional differential equations[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(10): 3337-3343. | 
| 22 | LAKSHMIKANTHAM V, VATSALA A S. Basic theory of fractional differential equations[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(8): 2677-2682. | 
| 23 | IBRAHIM R W, MOMANI S. On the existence and uniqueness of solutions of a class of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2007, 334(1): 1-10. | 
| 24 | JARADAT O K, AL-OMARI A, MOMANI S. Existence of the mild solution for fractional semilinear initial value problems[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(9): 3153-3159. | 
| 25 | DHAGE B C. A general multi-valued hybrid fixed point theorem and perturbed differential inclusions[J]. Nonlinear Analysis: Theory, Methods and Applications, 2006, 64(12): 2747-2772. | 
| 26 | LIN W. Global existence theory and chaos control of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2007, 332(1): 709-726. | 
| 27 | ZHANG S. Existence of positive solution for some class of nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2003, 278(1): 136-148. | 
| 28 | ZHANG S. The existence of a positive solution for a nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2000, 252(2): 804-812. | 
| 29 | BAI Z, LÜ H. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505. | 
| 30 | BAI C. Positive solutions for nonlinear fractional differential equations with coefficient that changes sign[J]. Nonlinear Analysis: Theory, Methods and Applications, 2006, 64(4): 677-685. | 
| 31 | LU X, LIU F. The explicit and implicit finite difference approximations for a space fractional advection diffusion equation[C]// Computational Mechanics Abstract (Volume 1): Abstracts of the Papers Presented at the Minisymposium Sessions of the 6th World Congress on Computational Mechanics in conjunction with the 2nd Asian-Pacific Congress on Computational Mechanics. Cham: Springer, 2004: 120-120. | 
| 32 | MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1): 65-77. | 
| 33 | ZHUANG P, LIU F. Implicit difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematics and Computing, 2006, 22(3): 87-99. | 
| 34 | LIU Q, LIU F, TURNER I, et al. Finite element approximation for a modified anomalous subdiffusion equation[J]. Applied Mathematical Modelling, 2011, 35(8): 4103-4116. | 
| 35 | JIA L, CHEN H, WANG H. Mixed-type Galerkin variational principle and numerical simulation for a generalized nonlocal elastic model[J]. Journal of Scientific Computing, 2017, 71(2): 660-681. | 
| 36 | LI Y, CHEN H, WANG H. A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations[J]. Mathematical Methods in the Applied Sciences, 2017, 40(14): 5018-5034. | 
| 37 | FIX G J, ROOF J P. Least squares finite-element solution of a fractional order two-point boundary value problem[J]. Computers and Mathematics with Applications, 2004, 48(7/8): 1017-1033. | 
| 38 | PODLUBNY I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. San Diego, CA: Academic Press, 1998. | 
| 39 | DENG W. Short memory principle and a predictor-corrector approach for fractional differential equations[J]. Journal of Computational and Applied Mathematics, 2007, 206(1): 174-188. | 
| 40 | TOMOVSKI Z, GARRA R. Analytic solutions of fractional integro-differential equations of Volterra type with variable coefficients[J]. Fractional Calculus and Applied Analysis, 2014, 17(1): 38-60. | 
| 41 | 内藤敏机,原惟行,日野义之,等. 时滞微分方程——泛函微分方程引论[M]. 马万彪,陆征一,译. 北京:科学出版社, 2013. | 
| NAITO T, HARA T, HINO Y, et al. Differential equations with time lag: introduction to functional differential equations[M]. MA W B, LU Z Y, translated. Beijing: Science Press, 2013. | |
| 42 | 高心,刘兴文,邵仕泉. 分数阶动力学系统的混沌、控制与同步[M].成都:电子科技大学出版社, 2010. | 
| GAO X, LIU X W, SHAO S Q. Chaos, control and synchronization of fractional order dynamic systems[M]. Chengdu: University of Electronic Science and Technology of China Press, 2010. | |
| 43 | EDELMAN M. On stability of fixed points and chaos in fractional systems[J]. Chaos, 2018, 28(2): No.023112. | 
| 44 | 刘杉杉,高飞,李文琴. 二维Logistic分数阶微分方程的离散化过程[J]. 计算机应用, 2019, 39(1): 305-310. | 
| LIU S S, GAO F, LI W Q. Discretization process of coupled Logistic fractional-order differential equation[J]. Journal of Computer Applications, 2019, 39(1): 305-310. | 
| [1] | 李学明, 吴国豪, 周尚波, 林晓然, 谢洪斌. 基于分数阶网络和强化学习的图像实例分割模型[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 574-583. | 
| [2] | 邱甲军, 吴跃, 惠孛, 刘彦伯. 基于小波变换的分数阶微分算法在肝脏肿瘤CT图像纹理增强中的应用[J]. 计算机应用, 2019, 39(4): 1196-1200. | 
| [3] | 金滔, 董秀成, 李亦宁, 任磊, 范佩佩. 改进的粒子群优化算法优化分数阶PID控制器参数[J]. 计算机应用, 2019, 39(3): 796-801. | 
| [4] | 雷思佳, 赵凤群. 基于自适应Riesz分数阶微分的雾天图像增强[J]. 计算机应用, 2018, 38(5): 1427-1431. | 
| [5] | 周尚波, 王李平, 尹学辉. 分数阶偏微分方程在图像处理中的应用[J]. 计算机应用, 2017, 37(2): 546-552. | 
| [6] | 金建国, 肖莹, 邸志刚. 基于混沌动态随机分组与调制分数阶FFT旋转因子的图像加密[J]. 计算机应用, 2016, 36(4): 966-972. | 
| [7] | 王思秀, 徐舟, 汪晓洁, 汪江桦. 基于部分相关的LFM脉冲全参数估计[J]. 计算机应用, 2016, 36(10): 2927-2932. | 
| [8] | 王程啸, 黄辉先, 杨辉, 徐建闽. 基于Riemann-Liouville改进的1~2阶分数阶边缘提取新模型[J]. 计算机应用, 2016, 36(1): 227-232. | 
| [9] | 李瑞国, 张宏立, 王雅. 基于量子粒子群优化算法的新型正交基神经网络分数阶混沌时间序列单步预测[J]. 计算机应用, 2015, 35(8): 2227-2232. | 
| [10] | 刘德亮, 刘开华, 于洁潇, 张良, 赵阳. 短快拍条件下宽带chirp信号的波达方向估计[J]. 计算机应用, 2015, 35(2): 351-353. | 
| [11] | 胡学刚 李妤. 基于分数阶变分的图像泊松去噪模型[J]. 计算机应用, 2013, 33(04): 1100-1102. | 
| [12] | 王雅庆 周尚波. 基于分数阶陈氏混沌系统的图像加密算法[J]. 计算机应用, 2013, 33(04): 1043-1046. | 
| [13] | 黄果 许黎 陈庆利 蒲亦非. 基于分数阶Riemann-Liouville积分的图像去噪[J]. 计算机应用, 2013, 33(01): 35-39. | 
| [14] | 蒋伟 丁志全 刘亚威. 基于分数阶偏微分的图像边缘检测新模型[J]. 计算机应用, 2012, 32(10): 2848-2850. | 
| [15] | 刘磊 苗启广 石程. 面向小波域的加权分数阶微积分图像数字水印新算法[J]. 计算机应用, 2011, 31(11): 3048-3052. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||