《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1595-1604.DOI: 10.11772/j.issn.1001-9081.2024050575
        
                    
            张寒崧1, 贺毅朝1,2( ), 孙菲1, 陈国新1, 陈炬1
), 孙菲1, 陈国新1, 陈炬1
                  
        
        
        
        
    
收稿日期:2024-05-10
									
				
											修回日期:2024-07-20
									
				
											接受日期:2024-07-22
									
				
											发布日期:2024-07-25
									
				
											出版日期:2025-05-10
									
				
			通讯作者:
					贺毅朝
							作者简介:张寒崧(1999—),男,河北邯郸人,硕士研究生,主要研究方向:演化算法基金资助:
        
                                                                                                                                            Hansong ZHANG1, Yichao HE1,2( ), Fei SUN1, Guoxin CHEN1, Ju CHEN1
), Fei SUN1, Guoxin CHEN1, Ju CHEN1
			  
			
			
			
                
        
    
Received:2024-05-10
									
				
											Revised:2024-07-20
									
				
											Accepted:2024-07-22
									
				
											Online:2024-07-25
									
				
											Published:2025-05-10
									
			Contact:
					Yichao HE   
							About author:ZHANG Hansong, born in 1999, M. S. candidate. His research interests include evolutionary algorithm.Supported by:摘要:
为了利用环论优化算法(RTEA)高效求解多维背包问题(MKP),在分析已有修复优化算子——基于物品整体资源消耗伪效用比的修复优化算子RO1和基于物品各维度资源消耗价值密度的修复优化算子RO3不足的基础上,结合互补策略提出一种新的修复优化算子——加权修复优化算子RO4。随后,引入继承策略改进RTEA的全局进化算子,并基于Logistic模型提出适用于MKP的自适应反向变异算子,由此提出了求解MKP的算法IRTEA-RO4。为验证IRTEA-RO4的高效性,利用它求解MKP的114个国际通用基准实例,并与已有求解MKP的6个较先进算法进行比较,结果表明:对于小规模MKP实例,IRTEA-RO4的求解精度和求解速度均为最佳;对于大规模MKP实例,IRTEA-RO4求得的最好结果比6个对比算法的最好结果提高了21%~125%,而且平均性能与稳定性更优,计算速度更快。
中图分类号:
张寒崧, 贺毅朝, 孙菲, 陈国新, 陈炬. 基于新修复优化算子的改进环论优化算法求解多维背包问题[J]. 计算机应用, 2025, 45(5): 1595-1604.
Hansong ZHANG, Yichao HE, Fei SUN, Guoxin CHEN, Ju CHEN. Improved ring theory-based evolutionary algorithm with new repair optimization operator for solving multi-dimensional knapsack problem[J]. Journal of Computer Applications, 2025, 45(5): 1595-1604.
| 算法 | N | MIT | RT | 其他参数 | 算法 | N | MIT | RT | 其他参数 | 
|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | 30或50 | 103或104 | 100 | HBDE | 30或50 | 103或104 | 100 | ||
| BAAA | 100 | 35×103 | 100 | sf=2, eloss=0.3, Ap=0.5, τ=1.5 | MA/PL | 150 | 5×103 | 30 | AL=20, LR=0.01 | 
| TR-BDS | 30或100 | 104或5×104 | 100 | ABQPSO | 50 | 50n | 30 | α=0.8 | |
| BGWO | 20 | 105 | 30 | 
表1 实验算法的参数取值
Tab. 1 Parameter values of experimental algorithms
| 算法 | N | MIT | RT | 其他参数 | 算法 | N | MIT | RT | 其他参数 | 
|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | 30或50 | 103或104 | 100 | HBDE | 30或50 | 103或104 | 100 | ||
| BAAA | 100 | 35×103 | 100 | sf=2, eloss=0.3, Ap=0.5, τ=1.5 | MA/PL | 150 | 5×103 | 30 | AL=20, LR=0.01 | 
| TR-BDS | 30或100 | 104或5×104 | 100 | ABQPSO | 50 | 50n | 30 | α=0.8 | |
| BGWO | 20 | 105 | 30 | 
| 算法 | G1 | cb5.100 | cb5.500 | cb10. 100 | cb10. 500 | cb30. 100 | cb30. 500 | 算法 | G1 | cb5.100 | cb5.500 | cb10. 100 | cb10. 500 | cb30. 100 | cb30. 500 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | √ | √ | √ | √ | √ | √ | √ | HBDE | √ | √ | × | √ | × | √ | × | 
| BAAA | √ | × | √ | √ | × | × | × | MA/PL | √ | √ | √ | √ | √ | × | √ | 
| TR-BDS | √ | √ | × | × | √ | × | × | ABQPSO | √ | √ | √ | √ | √ | × | × | 
| BGWO | × | √ | × | × | × | × | √ | 
表2 实验算法计算的实例标注
Tab. 2 Labeling of instances calculated by experimental algorithms
| 算法 | G1 | cb5.100 | cb5.500 | cb10. 100 | cb10. 500 | cb30. 100 | cb30. 500 | 算法 | G1 | cb5.100 | cb5.500 | cb10. 100 | cb10. 500 | cb30. 100 | cb30. 500 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | √ | √ | √ | √ | √ | √ | √ | HBDE | √ | √ | × | √ | × | √ | × | 
| BAAA | √ | × | √ | √ | × | × | × | MA/PL | √ | √ | √ | √ | √ | × | √ | 
| TR-BDS | √ | √ | × | × | √ | × | × | ABQPSO | √ | √ | √ | √ | √ | × | × | 
| BGWO | × | √ | × | × | × | × | √ | 
| 实例 | n×m | Opt | IRTEA-RO4 | BAAA | TR-BDS | HBDE | MA/PL | ABQPSO | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SR | AT | SR | AT | SR | AT | SR | AT | SR | AT | SR | AT | |||
| SENTO1 | 60×30 | 7 772 | 1.00 | 0.28 | 1.00 | — | 0.8 | 21.71 | 1.00 | 0.54 | 1.00 | 10.34 | 1.00 | 0.14 | 
| SENTO2 | 60×31 | 8 722 | 1.00 | 0.28 | 1.00 | — | 0.73 | 21.69 | 0.91 | 0.40 | 1.00 | 10.64 | 1.00 | 0.04 | 
| HP1 | 28×4 | 3 418 | 1.00 | 0.07 | 0.93 | — | 0.40 | 16.33 | 1.00 | 0.07 | 1.00 | 3.73 | 1.00 | 0.06 | 
| HP2 | 28×5 | 3 186 | 1.00 | 0.08 | 0.27 | — | 0.97 | 16.57 | 1.00 | 0.08 | 1.00 | 4.68 | 1.00 | 0.17 | 
| PB1 | 27×4 | 3 090 | 1.00 | 0.07 | 1.00 | — | 0.50 | 16.16 | 1.00 | 0.06 | 1.00 | 3.68 | 1.00 | 0.03 | 
| PB2 | 34×4 | 3 186 | 1.00 | 0.08 | 1.00 | — | 0.97 | 16.52 | 1.00 | 0.08 | 1.00 | 4.47 | 1.00 | 0.19 | 
| PB4 | 29×2 | 95 168 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.84 | 1.00 | 0.07 | 1.00 | 3.74 | 1.00 | 0.01 | 
| PB5 | 20×10 | 2 139 | 1.00 | 0.06 | 1.00 | — | 0.80 | 16.49 | 1.00 | 0.07 | 1.00 | 2.71 | 1.00 | 0.04 | 
| PB6 | 40×30 | 776 | 1.00 | 0.19 | 1.00 | — | 0.57 | 20.16 | 1.00 | 0.41 | 1.00 | 6.42 | 1.00 | 0.10 | 
| PB7 | 37×30 | 1 035 | 1.00 | 0.18 | 1.00 | — | 0.80 | 20.14 | 1.00 | 0.30 | 1.00 | 6.39 | 1.00 | 0.01 | 
| PET2 | 10×10 | 87 061 | 1.00 | 0.03 | — | — | — | — | — | — | 1.00 | 1.37 | — | — | 
| PET3 | 15×10 | 4 015 | 1.00 | 0.05 | — | — | — | — | — | — | 1.00 | 2.09 | — | — | 
| PET4 | 20×10 | 6 120 | 1.00 | 0.06 | — | — | — | — | — | — | 1.00 | 2.77 | — | — | 
| PET5 | 28×10 | 12 400 | 1.00 | 0.08 | — | — | — | — | — | — | 1.00 | 3.96 | — | — | 
| PET6 | 39×5 | 10 618 | 1.00 | 0.10 | — | — | — | — | — | — | 0.83 | 6.04 | — | — | 
| PET7 | 50×5 | 16 537 | 1.00 | 0.12 | — | — | — | — | — | — | 1.00 | 7.98 | — | — | 
| WEING1 | 28×2 | 141 278 | 1.00 | 0.06 | 1.00 | — | 1.00 | 15.65 | 1.00 | 0.06 | 1.00 | 4.15 | 1.00 | 0.02 | 
| WEING2 | 28×2 | 130 883 | 1.00 | 0.06 | 1.00 | — | 1.00 | 15.74 | 1.00 | 0.07 | 1.00 | 4.27 | 1.00 | 0.04 | 
| WEING3 | 28×2 | 95 677 | 1.00 | 0.06 | 1.00 | — | 0.00 | 15.61 | 1.00 | 0.07 | 1.00 | 4.27 | 1.00 | 0.60 | 
| WEING4 | 28×2 | 119 337 | 1.00 | 0.06 | 1.00 | — | 1.00 | 15.65 | 1.00 | 0.07 | 1.00 | 4.33 | 1.00 | 0.01 | 
| WEING5 | 28×2 | 98 796 | 1.00 | 0.06 | 1.00 | — | 0.70 | 16.97 | 1.00 | 0.07 | 1.00 | 4.20 | 1.00 | 0.01 | 
| WEING6 | 28×2 | 130 623 | 1.00 | 0.06 | 1.00 | — | 1.00 | 16.75 | 1.00 | 0.06 | 1.00 | 4.13 | 1.00 | 0.02 | 
| WEING7 | 105×2 | 1 095 445 | 1.00 | 0.23 | 0.58 | — | 0.00 | 21.70 | 1.00 | 0.21 | 0.23 | 16.30 | <1.00 | 5.67 | 
| WEING8 | 105×2 | 624 319 | 1.00 | 0.23 | 0.93 | — | 0.50 | 20.05 | 1.00 | 0.26 | 1.00 | 18.12 | 1.00 | 0.10 | 
| WEISH01 | 30×5 | 4 554 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.27 | 1.00 | 0.08 | 1.00 | 4.67 | 1.00 | 0.01 | 
| WEISH02 | 30×5 | 4 536 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.27 | 1.00 | 0.08 | 1.00 | 4.65 | 1.00 | 0.01 | 
| WEISH03 | 30×5 | 4 115 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.22 | 1.00 | 0.09 | 1.00 | 4.70 | 1.00 | 0.01 | 
| WEISH04 | 30×5 | 4 561 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.13 | 1.00 | 0.08 | 1.00 | 4.62 | 1.00 | 0.01 | 
| WEISH05 | 30×5 | 4 514 | 1.00 | 0.08 | 1.00 | — | 1.00 | 15.12 | 1.00 | 0.09 | 1.00 | 4.76 | 1.00 | 0.01 | 
| WEISH06 | 40×5 | 5 557 | 1.00 | 0.10 | 1.00 | — | 1.00 | 15.82 | 0.91 | 0.11 | 1.00 | 6.45 | 1.00 | 0.03 | 
| WEISH07 | 40×5 | 5 567 | 1.00 | 0.10 | 1.00 | — | 0.98 | 15.81 | 1.00 | 0.10 | 1.00 | 6 .41 | 1.00 | 0.01 | 
| WEISH08 | 40×5 | 5 605 | 1.00 | 0.10 | 1.00 | — | 0.98 | 15.86 | 1.00 | 0.11 | 1.00 | 6.46 | 1.00 | 0.06 | 
| WEISH09 | 40×5 | 5 246 | 1.00 | 0.10 | 1.00 | — | 1.00 | 15.77 | 1.00 | 0.12 | 1.00 | 6.43 | 1.00 | 0.01 | 
| WEISH10 | 50×5 | 6 339 | 1.00 | 0.13 | 1.00 | — | 1.00 | 16.30 | 1.00 | 0.15 | 1.00 | 8.26 | 1.00 | 0.02 | 
| WEISH11 | 50×5 | 5 643 | 1.00 | 0.13 | 1.00 | — | 0.92 | 16.18 | 1.00 | 0.15 | 1.00 | 7.82 | 1.00 | 0.01 | 
| WEISH12 | 50×5 | 6 339 | 1.00 | 0.12 | 1.00 | — | 0.96 | 16.24 | 1.00 | 0.15 | 1.00 | 7.73 | 1.00 | 0.02 | 
| WEISH13 | 50×5 | 6 159 | 1.00 | 0.13 | 1.00 | — | 0.98 | 16.20 | 1.00 | 0.15 | 1.00 | 7.80 | 1.00 | 0.01 | 
| WEISH14 | 60×5 | 6 954 | 1.00 | 0.15 | 1.00 | — | 0.92 | 16.84 | 1.00 | 0.18 | 1.00 | 9.38 | 1.00 | 0.01 | 
| WEISH15 | 60×5 | 7 486 | 1.00 | 0.15 | 1.00 | — | 0.96 | 16.83 | 1.00 | 0.17 | 1.00 | 9.41 | 1.00 | 0.03 | 
| WEISH16 | 60×5 | 7 289 | 1.00 | 0.15 | 1.00 | — | 1.00 | 16.88 | 1.00 | 0.17 | 1.00 | 9.29 | 1.00 | 0.11 | 
| WEISH17 | 60×5 | 8 633 | 1.00 | 0.14 | 1.00 | — | 1.00 | 17.17 | 1.00 | 0.14 | 1.00 | 9.17 | 1.00 | 0.03 | 
| WEISH18 | 70×5 | 9 580 | 1.00 | 0.17 | 1.00 | — | 0.98 | 17.71 | 1.00 | 0.19 | 1.00 | 10.86 | 1.00 | 0.23 | 
| WEISH19 | 70×5 | 7 698 | 1.00 | 0.18 | 1.00 | — | 0.96 | 17.42 | 1.00 | 0.23 | 1.00 | 13.56 | 1.00 | 0.02 | 
| WEISH20 | 70×5 | 9 450 | 1.00 | 0.17 | 1.00 | — | 0.96 | 17.64 | 1.00 | 0.19 | 1.00 | 10.96 | 1.00 | 0.17 | 
| WEISH21 | 70×5 | 9 074 | 1.00 | 0.17 | 1.00 | — | 0.96 | 17.59 | 1.00 | 0.20 | 1.00 | 12.08 | 1.00 | 0.08 | 
| WEISH22 | 80×5 | 8 947 | 1.00 | 0.20 | 1.00 | — | 0.98 | 17.88 | 1.00 | 0.24 | 1.00 | 12.72 | 1.00 | 0.12 | 
| WEISH23 | 80×5 | 8 344 | 1.00 | 0.20 | 0.45 | — | 0.92 | 17.81 | 1.00 | 0.25 | 1.00 | 12.83 | 1.00 | 0.25 | 
| WEISH24 | 80×5 | 10 220 | 1.00 | 0.19 | 0.54 | — | 0.68 | 18.16 | 1.00 | 0.20 | 1.00 | 12.61 | 1.00 | 0.26 | 
| WEISH25 | 80×5 | 9 939 | 1.00 | 0.19 | 1.00 | — | 0.84 | 18.02 | 1.00 | 0.23 | 1.00 | 12.67 | 1.00 | 0.23 | 
| WEISH26 | 90×5 | 9 584 | 1.00 | 0.23 | 1.00 | — | 0.94 | 18.39 | 1.00 | 0.28 | 1.00 | 14.39 | 1.00 | 0.16 | 
| WEISH27 | 90×5 | 9 819 | 1.00 | 0.23 | 1.00 | — | 0.98 | 18.27 | 1.00 | 0.27 | 1.00 | 14.40 | 1.00 | 0.03 | 
| WEISH28 | 90×5 | 9 492 | 1.00 | 0.23 | 1.00 | — | 0.94 | 18.28 | 1.00 | 0.28 | 1.00 | 14.59 | 1.00 | 0.03 | 
| WEISH29 | 90×5 | 9 410 | 1.00 | 0.23 | 1.00 | — | 0.92 | 18.30 | 1.00 | 0.30 | 1.00 | 14.47 | 1.00 | 0.03 | 
| WEISH30 | 90×5 | 11 191 | 1.00 | 0.22 | 1.00 | — | 0.32 | 18.67 | 1.00 | 0.24 | 1.00 | 14.31 | 1.00 | 0.13 | 
| SUM-SR | 54 | 45.7 | 40.8 | 47.8 | 53.1 | <48 | ||||||||
| AVG-AT | 0.13 | — | 17.20 | 0.17 | 8.11 | 0.20 | ||||||||
表3 6个算法求解实例G1的计算结果
Tab. 3 Calculation results of six algorithms solving instances G1
| 实例 | n×m | Opt | IRTEA-RO4 | BAAA | TR-BDS | HBDE | MA/PL | ABQPSO | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SR | AT | SR | AT | SR | AT | SR | AT | SR | AT | SR | AT | |||
| SENTO1 | 60×30 | 7 772 | 1.00 | 0.28 | 1.00 | — | 0.8 | 21.71 | 1.00 | 0.54 | 1.00 | 10.34 | 1.00 | 0.14 | 
| SENTO2 | 60×31 | 8 722 | 1.00 | 0.28 | 1.00 | — | 0.73 | 21.69 | 0.91 | 0.40 | 1.00 | 10.64 | 1.00 | 0.04 | 
| HP1 | 28×4 | 3 418 | 1.00 | 0.07 | 0.93 | — | 0.40 | 16.33 | 1.00 | 0.07 | 1.00 | 3.73 | 1.00 | 0.06 | 
| HP2 | 28×5 | 3 186 | 1.00 | 0.08 | 0.27 | — | 0.97 | 16.57 | 1.00 | 0.08 | 1.00 | 4.68 | 1.00 | 0.17 | 
| PB1 | 27×4 | 3 090 | 1.00 | 0.07 | 1.00 | — | 0.50 | 16.16 | 1.00 | 0.06 | 1.00 | 3.68 | 1.00 | 0.03 | 
| PB2 | 34×4 | 3 186 | 1.00 | 0.08 | 1.00 | — | 0.97 | 16.52 | 1.00 | 0.08 | 1.00 | 4.47 | 1.00 | 0.19 | 
| PB4 | 29×2 | 95 168 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.84 | 1.00 | 0.07 | 1.00 | 3.74 | 1.00 | 0.01 | 
| PB5 | 20×10 | 2 139 | 1.00 | 0.06 | 1.00 | — | 0.80 | 16.49 | 1.00 | 0.07 | 1.00 | 2.71 | 1.00 | 0.04 | 
| PB6 | 40×30 | 776 | 1.00 | 0.19 | 1.00 | — | 0.57 | 20.16 | 1.00 | 0.41 | 1.00 | 6.42 | 1.00 | 0.10 | 
| PB7 | 37×30 | 1 035 | 1.00 | 0.18 | 1.00 | — | 0.80 | 20.14 | 1.00 | 0.30 | 1.00 | 6.39 | 1.00 | 0.01 | 
| PET2 | 10×10 | 87 061 | 1.00 | 0.03 | — | — | — | — | — | — | 1.00 | 1.37 | — | — | 
| PET3 | 15×10 | 4 015 | 1.00 | 0.05 | — | — | — | — | — | — | 1.00 | 2.09 | — | — | 
| PET4 | 20×10 | 6 120 | 1.00 | 0.06 | — | — | — | — | — | — | 1.00 | 2.77 | — | — | 
| PET5 | 28×10 | 12 400 | 1.00 | 0.08 | — | — | — | — | — | — | 1.00 | 3.96 | — | — | 
| PET6 | 39×5 | 10 618 | 1.00 | 0.10 | — | — | — | — | — | — | 0.83 | 6.04 | — | — | 
| PET7 | 50×5 | 16 537 | 1.00 | 0.12 | — | — | — | — | — | — | 1.00 | 7.98 | — | — | 
| WEING1 | 28×2 | 141 278 | 1.00 | 0.06 | 1.00 | — | 1.00 | 15.65 | 1.00 | 0.06 | 1.00 | 4.15 | 1.00 | 0.02 | 
| WEING2 | 28×2 | 130 883 | 1.00 | 0.06 | 1.00 | — | 1.00 | 15.74 | 1.00 | 0.07 | 1.00 | 4.27 | 1.00 | 0.04 | 
| WEING3 | 28×2 | 95 677 | 1.00 | 0.06 | 1.00 | — | 0.00 | 15.61 | 1.00 | 0.07 | 1.00 | 4.27 | 1.00 | 0.60 | 
| WEING4 | 28×2 | 119 337 | 1.00 | 0.06 | 1.00 | — | 1.00 | 15.65 | 1.00 | 0.07 | 1.00 | 4.33 | 1.00 | 0.01 | 
| WEING5 | 28×2 | 98 796 | 1.00 | 0.06 | 1.00 | — | 0.70 | 16.97 | 1.00 | 0.07 | 1.00 | 4.20 | 1.00 | 0.01 | 
| WEING6 | 28×2 | 130 623 | 1.00 | 0.06 | 1.00 | — | 1.00 | 16.75 | 1.00 | 0.06 | 1.00 | 4.13 | 1.00 | 0.02 | 
| WEING7 | 105×2 | 1 095 445 | 1.00 | 0.23 | 0.58 | — | 0.00 | 21.70 | 1.00 | 0.21 | 0.23 | 16.30 | <1.00 | 5.67 | 
| WEING8 | 105×2 | 624 319 | 1.00 | 0.23 | 0.93 | — | 0.50 | 20.05 | 1.00 | 0.26 | 1.00 | 18.12 | 1.00 | 0.10 | 
| WEISH01 | 30×5 | 4 554 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.27 | 1.00 | 0.08 | 1.00 | 4.67 | 1.00 | 0.01 | 
| WEISH02 | 30×5 | 4 536 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.27 | 1.00 | 0.08 | 1.00 | 4.65 | 1.00 | 0.01 | 
| WEISH03 | 30×5 | 4 115 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.22 | 1.00 | 0.09 | 1.00 | 4.70 | 1.00 | 0.01 | 
| WEISH04 | 30×5 | 4 561 | 1.00 | 0.07 | 1.00 | — | 1.00 | 15.13 | 1.00 | 0.08 | 1.00 | 4.62 | 1.00 | 0.01 | 
| WEISH05 | 30×5 | 4 514 | 1.00 | 0.08 | 1.00 | — | 1.00 | 15.12 | 1.00 | 0.09 | 1.00 | 4.76 | 1.00 | 0.01 | 
| WEISH06 | 40×5 | 5 557 | 1.00 | 0.10 | 1.00 | — | 1.00 | 15.82 | 0.91 | 0.11 | 1.00 | 6.45 | 1.00 | 0.03 | 
| WEISH07 | 40×5 | 5 567 | 1.00 | 0.10 | 1.00 | — | 0.98 | 15.81 | 1.00 | 0.10 | 1.00 | 6 .41 | 1.00 | 0.01 | 
| WEISH08 | 40×5 | 5 605 | 1.00 | 0.10 | 1.00 | — | 0.98 | 15.86 | 1.00 | 0.11 | 1.00 | 6.46 | 1.00 | 0.06 | 
| WEISH09 | 40×5 | 5 246 | 1.00 | 0.10 | 1.00 | — | 1.00 | 15.77 | 1.00 | 0.12 | 1.00 | 6.43 | 1.00 | 0.01 | 
| WEISH10 | 50×5 | 6 339 | 1.00 | 0.13 | 1.00 | — | 1.00 | 16.30 | 1.00 | 0.15 | 1.00 | 8.26 | 1.00 | 0.02 | 
| WEISH11 | 50×5 | 5 643 | 1.00 | 0.13 | 1.00 | — | 0.92 | 16.18 | 1.00 | 0.15 | 1.00 | 7.82 | 1.00 | 0.01 | 
| WEISH12 | 50×5 | 6 339 | 1.00 | 0.12 | 1.00 | — | 0.96 | 16.24 | 1.00 | 0.15 | 1.00 | 7.73 | 1.00 | 0.02 | 
| WEISH13 | 50×5 | 6 159 | 1.00 | 0.13 | 1.00 | — | 0.98 | 16.20 | 1.00 | 0.15 | 1.00 | 7.80 | 1.00 | 0.01 | 
| WEISH14 | 60×5 | 6 954 | 1.00 | 0.15 | 1.00 | — | 0.92 | 16.84 | 1.00 | 0.18 | 1.00 | 9.38 | 1.00 | 0.01 | 
| WEISH15 | 60×5 | 7 486 | 1.00 | 0.15 | 1.00 | — | 0.96 | 16.83 | 1.00 | 0.17 | 1.00 | 9.41 | 1.00 | 0.03 | 
| WEISH16 | 60×5 | 7 289 | 1.00 | 0.15 | 1.00 | — | 1.00 | 16.88 | 1.00 | 0.17 | 1.00 | 9.29 | 1.00 | 0.11 | 
| WEISH17 | 60×5 | 8 633 | 1.00 | 0.14 | 1.00 | — | 1.00 | 17.17 | 1.00 | 0.14 | 1.00 | 9.17 | 1.00 | 0.03 | 
| WEISH18 | 70×5 | 9 580 | 1.00 | 0.17 | 1.00 | — | 0.98 | 17.71 | 1.00 | 0.19 | 1.00 | 10.86 | 1.00 | 0.23 | 
| WEISH19 | 70×5 | 7 698 | 1.00 | 0.18 | 1.00 | — | 0.96 | 17.42 | 1.00 | 0.23 | 1.00 | 13.56 | 1.00 | 0.02 | 
| WEISH20 | 70×5 | 9 450 | 1.00 | 0.17 | 1.00 | — | 0.96 | 17.64 | 1.00 | 0.19 | 1.00 | 10.96 | 1.00 | 0.17 | 
| WEISH21 | 70×5 | 9 074 | 1.00 | 0.17 | 1.00 | — | 0.96 | 17.59 | 1.00 | 0.20 | 1.00 | 12.08 | 1.00 | 0.08 | 
| WEISH22 | 80×5 | 8 947 | 1.00 | 0.20 | 1.00 | — | 0.98 | 17.88 | 1.00 | 0.24 | 1.00 | 12.72 | 1.00 | 0.12 | 
| WEISH23 | 80×5 | 8 344 | 1.00 | 0.20 | 0.45 | — | 0.92 | 17.81 | 1.00 | 0.25 | 1.00 | 12.83 | 1.00 | 0.25 | 
| WEISH24 | 80×5 | 10 220 | 1.00 | 0.19 | 0.54 | — | 0.68 | 18.16 | 1.00 | 0.20 | 1.00 | 12.61 | 1.00 | 0.26 | 
| WEISH25 | 80×5 | 9 939 | 1.00 | 0.19 | 1.00 | — | 0.84 | 18.02 | 1.00 | 0.23 | 1.00 | 12.67 | 1.00 | 0.23 | 
| WEISH26 | 90×5 | 9 584 | 1.00 | 0.23 | 1.00 | — | 0.94 | 18.39 | 1.00 | 0.28 | 1.00 | 14.39 | 1.00 | 0.16 | 
| WEISH27 | 90×5 | 9 819 | 1.00 | 0.23 | 1.00 | — | 0.98 | 18.27 | 1.00 | 0.27 | 1.00 | 14.40 | 1.00 | 0.03 | 
| WEISH28 | 90×5 | 9 492 | 1.00 | 0.23 | 1.00 | — | 0.94 | 18.28 | 1.00 | 0.28 | 1.00 | 14.59 | 1.00 | 0.03 | 
| WEISH29 | 90×5 | 9 410 | 1.00 | 0.23 | 1.00 | — | 0.92 | 18.30 | 1.00 | 0.30 | 1.00 | 14.47 | 1.00 | 0.03 | 
| WEISH30 | 90×5 | 11 191 | 1.00 | 0.22 | 1.00 | — | 0.32 | 18.67 | 1.00 | 0.24 | 1.00 | 14.31 | 1.00 | 0.13 | 
| SUM-SR | 54 | 45.7 | 40.8 | 47.8 | 53.1 | <48 | ||||||||
| AVG-AT | 0.13 | — | 17.20 | 0.17 | 8.11 | 0.20 | ||||||||
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 24 381 | 24 274 | 23 551 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 380.6 | 24 274.0 | 23 533.9 | 23 492.2 | 23 966.1 | 24 608.7 | 25 561.6 | 23 409.6 | 24 216.0 | 24 391.6 | |
| Std | 1.74 | 0.00 | 6.68 | 8.94 | 2.78 | 6.46 | 34.55 | 4.48 | 0.00 | 23.43 | |
| AT | 2.69 | 2.64 | 2.70 | 2.73 | 2.71 | 2.73 | 2.70 | 2.70 | 2.69 | 2.72 | |
| TR-BDS | Best | 24 381 | 24 274 | 23 551 | 23 534 | 23 966 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 319.0 | 24 214.3 | 23 535.9 | 23 534.0 | 23 944.6 | 24 539.5 | 25 523.8 | 23 356.8 | 24 198.2 | 24 311.6 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| BGWO | Best | 24 381 | 24 274 | <23 538 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 381.0 | 24 270.7 | 23 525.5 | 23 494.2 | 23 970.1 | 24 608.7 | 25 591.0 | 23 369.4 | 24 206.8 | 24 406.6 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| HBDE | Best | 24 381 | 24 274 | <23 538 | <23 534 | <23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 378.1 | 24 250.4 | 23 490.7 | 23 465.0 | 23 953.4 | 24 597.9 | 25 522.4 | 23 410.0 | 24 187.2 | 24 297.0 | |
| Std | 7.66 | 61.01 | 33.44 | 30.54 | 17.50 | 8.97 | 9.80 | 0.00 | 16.63 | 26.88 | |
| AT | 4.53 | 4.47 | 4.78 | 4.85 | 4.67 | 4.56 | 4.61 | 4.64 | 4.71 | 4.86 | |
| MA/PL | Best | 24 381 | 24 274 | 23 538 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 380.7 | 24 274.0 | 23 520.0 | 23 486.0 | 23 962.4 | 24 588.9 | 25 558.3 | 23 376.2 | 24 208.4 | 24 371.4 | |
| Std | 1.45 | 0.00 | 14.50 | 16.32 | 7.54 | 31.36 | 34.92 | 35.55 | 5.78 | 45.19 | |
| AT | 16.95 | 16.66 | 16.78 | 17.44 | 16.78 | 16.85 | 16.76 | 17.04 | 16.36 | 17.18 | |
| ABQPSO | Best | 24 381 | 24 274 | 23 551 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 381.0 | 24 273.5 | 23 536.4 | 23 501.0 | 23 968.7 | 24 602.9 | 25 586.3 | 23 405.2 | 24 205.9 | 24 409.3 | |
| Std | 0.00 | 2.92 | 5.86 | 21.91 | 18.43 | 13.56 | 17.76 | 12.45 | 7.63 | 7.38 | |
| AT | 0.65 | 1.86 | 6.30 | 7.28 | 6.71 | 6.00 | 2.38 | 3.62 | 6.53 | 2.78 | |
| Opt | 24 381 | 24 274 | 23 551 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | |
表4 6个算法求解实例cb5.100.0~cb5.100.9的计算结果
Tab. 4 Calculation results of six algorithms solving instances cb5.100.0 - cb5.100.9
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 24 381 | 24 274 | 23 551 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 380.6 | 24 274.0 | 23 533.9 | 23 492.2 | 23 966.1 | 24 608.7 | 25 561.6 | 23 409.6 | 24 216.0 | 24 391.6 | |
| Std | 1.74 | 0.00 | 6.68 | 8.94 | 2.78 | 6.46 | 34.55 | 4.48 | 0.00 | 23.43 | |
| AT | 2.69 | 2.64 | 2.70 | 2.73 | 2.71 | 2.73 | 2.70 | 2.70 | 2.69 | 2.72 | |
| TR-BDS | Best | 24 381 | 24 274 | 23 551 | 23 534 | 23 966 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 319.0 | 24 214.3 | 23 535.9 | 23 534.0 | 23 944.6 | 24 539.5 | 25 523.8 | 23 356.8 | 24 198.2 | 24 311.6 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| BGWO | Best | 24 381 | 24 274 | <23 538 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 381.0 | 24 270.7 | 23 525.5 | 23 494.2 | 23 970.1 | 24 608.7 | 25 591.0 | 23 369.4 | 24 206.8 | 24 406.6 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| HBDE | Best | 24 381 | 24 274 | <23 538 | <23 534 | <23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 378.1 | 24 250.4 | 23 490.7 | 23 465.0 | 23 953.4 | 24 597.9 | 25 522.4 | 23 410.0 | 24 187.2 | 24 297.0 | |
| Std | 7.66 | 61.01 | 33.44 | 30.54 | 17.50 | 8.97 | 9.80 | 0.00 | 16.63 | 26.88 | |
| AT | 4.53 | 4.47 | 4.78 | 4.85 | 4.67 | 4.56 | 4.61 | 4.64 | 4.71 | 4.86 | |
| MA/PL | Best | 24 381 | 24 274 | 23 538 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 380.7 | 24 274.0 | 23 520.0 | 23 486.0 | 23 962.4 | 24 588.9 | 25 558.3 | 23 376.2 | 24 208.4 | 24 371.4 | |
| Std | 1.45 | 0.00 | 14.50 | 16.32 | 7.54 | 31.36 | 34.92 | 35.55 | 5.78 | 45.19 | |
| AT | 16.95 | 16.66 | 16.78 | 17.44 | 16.78 | 16.85 | 16.76 | 17.04 | 16.36 | 17.18 | |
| ABQPSO | Best | 24 381 | 24 274 | 23 551 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | 
| Mean | 24 381.0 | 24 273.5 | 23 536.4 | 23 501.0 | 23 968.7 | 24 602.9 | 25 586.3 | 23 405.2 | 24 205.9 | 24 409.3 | |
| Std | 0.00 | 2.92 | 5.86 | 21.91 | 18.43 | 13.56 | 17.76 | 12.45 | 7.63 | 7.38 | |
| AT | 0.65 | 1.86 | 6.30 | 7.28 | 6.71 | 6.00 | 2.38 | 3.62 | 6.53 | 2.78 | |
| Opt | 24 381 | 24 274 | 23 551 | 23 534 | 23 991 | 24 613 | 25 591 | 23 410 | 24 216 | 24 411 | |
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 120 148 | 117 879 | 121 131 | 120 799 | 122 319 | 122 006 | 119 126 | 120 551 | 121 575 | 120 707 | 
| Mean | 120 099.8 | 117 826.0 | 121 100.5 | 120 751.3 | 122 286.5 | 121 975.5 | 119 084.4 | 120 512.7 | 121 541.2 | 120 663.9 | |
| Std | 16.64 | 17.87 | 12.86 | 17.83 | 15.81 | 9.97 | 16.75 | 13.62 | 28.24 | 13.63 | |
| AT | 14.23 | 14.06 | 14.10 | 14.09 | 13.96 | 13.95 | 14.02 | 13.95 | 14.02 | 14.08 | |
| BAAA | Best | 120 066 | 117 702 | 120 951 | 120 572 | 122 231 | 121 957 | 119 070 | 120 472 | 121 052 | 120 499 | 
| Mean | 120 013.7 | 117 560.5 | 120 782.9 | 120 340.6 | 122 101.8 | 121 741.8 | 118 913.4 | 120 331.2 | 120 683.6 | 120 296.3 | |
| Std | 21.57 | 111.40 | 87.96 | 106.01 | 56.95 | 84.33 | 63.01 | 69.09 | 834.88 | 110.06 | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| MA/PL | Best | — | — | — | — | — | — | — | — | — | — | 
| Mean | 120 009.7 | 117 744.3 | 121 004.3 | 120 688.9 | 122 194.5 | 121 903.0 | 119 007.8 | 120 467.5 | 121 464.1 | 120 584.6 | |
| Std | 41.35 | 43.51 | 31.09 | 38.05 | 37.21 | 46.72 | 34.11 | 32.07 | 28.55 | 42.81 | |
| AT | 152.05 | 138.48 | 131.03 | 156.01 | 142.95 | 145.91 | 139.73 | 153.41 | 165.24 | 161.92 | |
| ABQPSO | Best | 120 099 | 117 864 | 121 104 | 120 778 | 122 319 | 122 024 | 119 102 | 120 536 | 121 537 | 120 678 | 
| Mean | 120 061.1 | 117 790.2 | 121 055.9 | 120 711.3 | 122 294.3 | 121 958.2 | 119 065.7 | 120 496.5 | 121 494.9 | 120 645.0 | |
| Std | 21.44 | 26.17 | 26.29 | 25.85 | 17.88 | 24.28 | 24.32 | 24.96 | 24.59 | 19.27 | |
| AT | 324.44 | 386.58 | 441.31 | 491.86 | 376.70 | 390.30 | 427.78 | 457.06 | 456.18 | 393.83 | |
| Opt | 120 148 | 117 879 | 121 131 | 120 804 | 122 319 | 122 024 | 119 127 | 120 568 | 121 586 | 120 717 | |
表5 4个算法求解实例cb5.500.0~cb5.500.9的计算结果
Tab. 5 Calculation results of four algorithms solving instances cb5.500.0 - cb5.500.9
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 120 148 | 117 879 | 121 131 | 120 799 | 122 319 | 122 006 | 119 126 | 120 551 | 121 575 | 120 707 | 
| Mean | 120 099.8 | 117 826.0 | 121 100.5 | 120 751.3 | 122 286.5 | 121 975.5 | 119 084.4 | 120 512.7 | 121 541.2 | 120 663.9 | |
| Std | 16.64 | 17.87 | 12.86 | 17.83 | 15.81 | 9.97 | 16.75 | 13.62 | 28.24 | 13.63 | |
| AT | 14.23 | 14.06 | 14.10 | 14.09 | 13.96 | 13.95 | 14.02 | 13.95 | 14.02 | 14.08 | |
| BAAA | Best | 120 066 | 117 702 | 120 951 | 120 572 | 122 231 | 121 957 | 119 070 | 120 472 | 121 052 | 120 499 | 
| Mean | 120 013.7 | 117 560.5 | 120 782.9 | 120 340.6 | 122 101.8 | 121 741.8 | 118 913.4 | 120 331.2 | 120 683.6 | 120 296.3 | |
| Std | 21.57 | 111.40 | 87.96 | 106.01 | 56.95 | 84.33 | 63.01 | 69.09 | 834.88 | 110.06 | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| MA/PL | Best | — | — | — | — | — | — | — | — | — | — | 
| Mean | 120 009.7 | 117 744.3 | 121 004.3 | 120 688.9 | 122 194.5 | 121 903.0 | 119 007.8 | 120 467.5 | 121 464.1 | 120 584.6 | |
| Std | 41.35 | 43.51 | 31.09 | 38.05 | 37.21 | 46.72 | 34.11 | 32.07 | 28.55 | 42.81 | |
| AT | 152.05 | 138.48 | 131.03 | 156.01 | 142.95 | 145.91 | 139.73 | 153.41 | 165.24 | 161.92 | |
| ABQPSO | Best | 120 099 | 117 864 | 121 104 | 120 778 | 122 319 | 122 024 | 119 102 | 120 536 | 121 537 | 120 678 | 
| Mean | 120 061.1 | 117 790.2 | 121 055.9 | 120 711.3 | 122 294.3 | 121 958.2 | 119 065.7 | 120 496.5 | 121 494.9 | 120 645.0 | |
| Std | 21.44 | 26.17 | 26.29 | 25.85 | 17.88 | 24.28 | 24.32 | 24.96 | 24.59 | 19.27 | |
| AT | 324.44 | 386.58 | 441.31 | 491.86 | 376.70 | 390.30 | 427.78 | 457.06 | 456.18 | 393.83 | |
| Opt | 120 148 | 117 879 | 121 131 | 120 804 | 122 319 | 122 024 | 119 127 | 120 568 | 121 586 | 120 717 | |
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 23 064 | 22 801 | 22 131 | 22 772 | 22 751 | 22 725 | 21 875 | 22 635 | 22 511 | 22 702 | 
| Mean | 23 057.2 | 22 752.7 | 22 131.0 | 22 753.4 | 22 739.6 | 22 705.3 | 21 824.3 | 22 555.7 | 22 456.6 | 22 702.0 | |
| Std | 3.95 | 20.06 | 0.00 | 22.91 | 35.50 | 13.09 | 22.03 | 23.66 | 43.84 | 0.00 | |
| AT | 3.14 | 3.14 | 3.15 | 3.15 | 3.12 | 3.18 | 3.15 | 3.14 | 3.14 | 3.11 | |
| BAAA | Best | <23 064 | 22 801 | 22 131 | 22 772 | 22 751 | <22 777 | 21 875 | 22 635 | 22 511 | 22 702 | 
| Mean | 23 043.3 | 22 750.2 | 22 091.1 | 22 645.7 | 22 635.3 | 22 711.0 | 21 822.2 | 22 530.7 | 22 412.9 | 22 650.5 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 17.50 | 17.02 | 13.48 | 17.81 | 14.18 | 17.41 | 13.07 | 17.99 | 19.16 | 15.58 | |
| HBDE | Best | <23 064 | 22 801 | 22 131 | <22 772 | 22 751 | <22 725 | <21 875 | 22 635 | 22 511 | <22 702 | 
| Mean | 23 053.9 | 22 735.4 | 22 098.2 | 22 693.2 | 22 748.4 | 22 593.6 | 21 734.5 | 22 550.1 | 22 436.9 | 22 471.4 | |
| Std | 7.56 | 51.55 | 32.76 | 43.87 | 17.92 | 45.86 | 63.11 | 20.47 | 46.40 | 37.54 | |
| AT | 6.98 | 6.64 | 6.85 | 6.74 | 6.71 | 6.74 | 6.96 | 6.70 | 6.96 | 6.85 | |
| MA/PL | Best | 23 057 | 22 801 | 22 131 | 22 763 | 22 751 | 22 777 | 21 856 | 22 635 | 22 511 | 22 561 | 
| Mean | 23 046.8 | 22 750.7 | 22 105.1 | 22 714.0 | 22 726.7 | 22 653.9 | 21 804.0 | 22 536.7 | 22 508.1 | 22 558.2 | |
| Std | 15.82 | 28.17 | 28.10 | 12.44 | 39.59 | 43.92 | 54.43 | 39.08 | 15.80 | 14.90 | |
| AT | 18.04 | 18.63 | 18.97 | 17.01 | 15.86 | 17.29 | 16.00 | 16.28 | 15.43 | 15.84 | |
| ABQPSO | Best | 23 057 | 22 801 | 22 131 | 22 772 | 22 697 | 22 725 | 21 875 | 22 551 | 22 511 | 22 702 | 
| Mean | 23 050.47 | 22 730.27 | 22 127.67 | 22 713.63 | 22 618 | 22 664.2 | 21 802.6 | 22 549.8 | 22 422.47 | 22 691.87 | |
| Std | 1.78 | 25.36 | 12.69 | 21.38 | 36.52 | 20.15 | 27.74 | 3.11 | 19.23 | 31.1 | |
| AT | 8.82 | 7.15 | 3.5 | 15.21 | 8.87 | 11.88 | 9.17 | 14.46 | 9.24 | 5.92 | |
| Opt | 23 064 | 22 801 | 22 131 | 22 772 | 22 751 | 22 777 | 21 875 | 22 635 | 22 511 | 22 702 | |
表6 5个算法求解实例cb10.100.0~cb10.100.9的计算结果
Tab. 6 Calculation results of five algorithms solving instances cb10.100.0 - cb10.100.9
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 23 064 | 22 801 | 22 131 | 22 772 | 22 751 | 22 725 | 21 875 | 22 635 | 22 511 | 22 702 | 
| Mean | 23 057.2 | 22 752.7 | 22 131.0 | 22 753.4 | 22 739.6 | 22 705.3 | 21 824.3 | 22 555.7 | 22 456.6 | 22 702.0 | |
| Std | 3.95 | 20.06 | 0.00 | 22.91 | 35.50 | 13.09 | 22.03 | 23.66 | 43.84 | 0.00 | |
| AT | 3.14 | 3.14 | 3.15 | 3.15 | 3.12 | 3.18 | 3.15 | 3.14 | 3.14 | 3.11 | |
| BAAA | Best | <23 064 | 22 801 | 22 131 | 22 772 | 22 751 | <22 777 | 21 875 | 22 635 | 22 511 | 22 702 | 
| Mean | 23 043.3 | 22 750.2 | 22 091.1 | 22 645.7 | 22 635.3 | 22 711.0 | 21 822.2 | 22 530.7 | 22 412.9 | 22 650.5 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 17.50 | 17.02 | 13.48 | 17.81 | 14.18 | 17.41 | 13.07 | 17.99 | 19.16 | 15.58 | |
| HBDE | Best | <23 064 | 22 801 | 22 131 | <22 772 | 22 751 | <22 725 | <21 875 | 22 635 | 22 511 | <22 702 | 
| Mean | 23 053.9 | 22 735.4 | 22 098.2 | 22 693.2 | 22 748.4 | 22 593.6 | 21 734.5 | 22 550.1 | 22 436.9 | 22 471.4 | |
| Std | 7.56 | 51.55 | 32.76 | 43.87 | 17.92 | 45.86 | 63.11 | 20.47 | 46.40 | 37.54 | |
| AT | 6.98 | 6.64 | 6.85 | 6.74 | 6.71 | 6.74 | 6.96 | 6.70 | 6.96 | 6.85 | |
| MA/PL | Best | 23 057 | 22 801 | 22 131 | 22 763 | 22 751 | 22 777 | 21 856 | 22 635 | 22 511 | 22 561 | 
| Mean | 23 046.8 | 22 750.7 | 22 105.1 | 22 714.0 | 22 726.7 | 22 653.9 | 21 804.0 | 22 536.7 | 22 508.1 | 22 558.2 | |
| Std | 15.82 | 28.17 | 28.10 | 12.44 | 39.59 | 43.92 | 54.43 | 39.08 | 15.80 | 14.90 | |
| AT | 18.04 | 18.63 | 18.97 | 17.01 | 15.86 | 17.29 | 16.00 | 16.28 | 15.43 | 15.84 | |
| ABQPSO | Best | 23 057 | 22 801 | 22 131 | 22 772 | 22 697 | 22 725 | 21 875 | 22 551 | 22 511 | 22 702 | 
| Mean | 23 050.47 | 22 730.27 | 22 127.67 | 22 713.63 | 22 618 | 22 664.2 | 21 802.6 | 22 549.8 | 22 422.47 | 22 691.87 | |
| Std | 1.78 | 25.36 | 12.69 | 21.38 | 36.52 | 20.15 | 27.74 | 3.11 | 19.23 | 31.1 | |
| AT | 8.82 | 7.15 | 3.5 | 15.21 | 8.87 | 11.88 | 9.17 | 14.46 | 9.24 | 5.92 | |
| Opt | 23 064 | 22 801 | 22 131 | 22 772 | 22 751 | 22 777 | 21 875 | 22 635 | 22 511 | 22 702 | |
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 117 779 | 119 189 | 119 141 | 118 813 | 116 489 | 119 448 | 119 764 | 118 288 | 117 776 | 119 180 | 
| Mean | 117 711.0 | 119 093.7 | 119 071.7 | 118 725.9 | 116 405.7 | 119 372.0 | 119 711.9 | 118 225.3 | 117 692.4 | 119 115.4 | |
| Std | 24.33 | 33.15 | 29.26 | 31.39 | 47.70 | 35.18 | 32.93 | 17.54 | 40.77 | 37.26 | |
| AT | 16.66 | 16.41 | 16.64 | 16.45 | 16.89 | 16.52 | 16.58 | 16.70 | 16.71 | 16.63 | |
| TR-BDS | Best | 114 716 | 119 232 | 119 215 | 118 813 | 114 687 | 119 504 | 116 094 | 116 642 | 114 654 | 114 016 | 
| Mean | 114 425.4 | 119 223.0 | 117 625.6 | 117 625.8 | 114 312.4 | 112 503.7 | 115 629.1 | 115 531.9 | 114 204.0 | 113 622.8 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 5 650.00 | 5 652.00 | 5 637.00 | 5 645.00 | 5 674.00 | 5 655.00 | 5 746.00 | 5 654.00 | 5 596.00 | 5 500.00 | |
| MA/PL | Best | 117 628 | 118 974 | 119 055 | 118 680 | 116 289 | 119 318 | 119 658 | 118 121 | 117 634 | 119 086 | 
| Mean | 117 571.2 | 118 928.9 | 118 950.4 | 118 614.6 | 116 229.6 | 119 248.2 | 119 566.1 | 118 036.5 | 117 546.6 | 118 981.1 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 159.11 | 153.88 | 166.51 | 154.94 | 158.44 | 148.38 | 163.87 | 157.29 | 162.53 | 150.97 | |
| ABQPSO | Best | 117 699 | 119 188 | 119 086 | 118 785 | 116 423 | 119 448 | 119 721 | 118 223 | 117 724 | 119 127 | 
| Mean | 117 638.5 | 119 090.6 | 119 004.7 | 118 694.3 | 116 349.1 | 119 361.9 | 119 668.4 | 118 216.4 | 117 667.0 | 119 057.6 | |
| Std | 48.42 | 39.43 | 47.69 | 44.52 | 44.55 | 46.51 | 36.00 | 26.17 | 47.63 | 31.54 | |
| AT | 483.72 | 526.51 | 571.64 | 488.35 | 515.56 | 424.14 | 532 | 500.09 | 394.67 | 504.29 | |
| Opt | 117 821 | 119 249 | 119 215 | 118 829 | 116 530 | 119 504 | 119 827 | 118 344 | 117 815 | 119 251 | |
表7 4个算法求解实例cb10.500.0~cb10.500.9的计算结果
Tab. 7 Calculation results of four algorithms solving instances cb10.500.0 - cb10.500.9
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 117 779 | 119 189 | 119 141 | 118 813 | 116 489 | 119 448 | 119 764 | 118 288 | 117 776 | 119 180 | 
| Mean | 117 711.0 | 119 093.7 | 119 071.7 | 118 725.9 | 116 405.7 | 119 372.0 | 119 711.9 | 118 225.3 | 117 692.4 | 119 115.4 | |
| Std | 24.33 | 33.15 | 29.26 | 31.39 | 47.70 | 35.18 | 32.93 | 17.54 | 40.77 | 37.26 | |
| AT | 16.66 | 16.41 | 16.64 | 16.45 | 16.89 | 16.52 | 16.58 | 16.70 | 16.71 | 16.63 | |
| TR-BDS | Best | 114 716 | 119 232 | 119 215 | 118 813 | 114 687 | 119 504 | 116 094 | 116 642 | 114 654 | 114 016 | 
| Mean | 114 425.4 | 119 223.0 | 117 625.6 | 117 625.8 | 114 312.4 | 112 503.7 | 115 629.1 | 115 531.9 | 114 204.0 | 113 622.8 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 5 650.00 | 5 652.00 | 5 637.00 | 5 645.00 | 5 674.00 | 5 655.00 | 5 746.00 | 5 654.00 | 5 596.00 | 5 500.00 | |
| MA/PL | Best | 117 628 | 118 974 | 119 055 | 118 680 | 116 289 | 119 318 | 119 658 | 118 121 | 117 634 | 119 086 | 
| Mean | 117 571.2 | 118 928.9 | 118 950.4 | 118 614.6 | 116 229.6 | 119 248.2 | 119 566.1 | 118 036.5 | 117 546.6 | 118 981.1 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 159.11 | 153.88 | 166.51 | 154.94 | 158.44 | 148.38 | 163.87 | 157.29 | 162.53 | 150.97 | |
| ABQPSO | Best | 117 699 | 119 188 | 119 086 | 118 785 | 116 423 | 119 448 | 119 721 | 118 223 | 117 724 | 119 127 | 
| Mean | 117 638.5 | 119 090.6 | 119 004.7 | 118 694.3 | 116 349.1 | 119 361.9 | 119 668.4 | 118 216.4 | 117 667.0 | 119 057.6 | |
| Std | 48.42 | 39.43 | 47.69 | 44.52 | 44.55 | 46.51 | 36.00 | 26.17 | 47.63 | 31.54 | |
| AT | 483.72 | 526.51 | 571.64 | 488.35 | 515.56 | 424.14 | 532 | 500.09 | 394.67 | 504.29 | |
| Opt | 117 821 | 119 249 | 119 215 | 118 829 | 116 530 | 119 504 | 119 827 | 118 344 | 117 815 | 119 251 | |
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 21 946 | 21 716 | 20 754 | 21 464 | 21 814 | 22 176 | 21 799 | 21 327 | 22 471 | 20 983 | 
| Mean | 21 946.0 | 21 583.7 | 20 682.9 | 21 420.9 | 21 786.4 | 22 176.0 | 21 746.5 | 21 220.2 | 22 430.7 | 20 982.6 | |
| Std | 0.00 | 24.99 | 23.70 | 20.53 | 28.12 | 0.00 | 44.24 | 70.83 | 50.52 | 3.88 | |
| AT | 4.74 | 5.60 | 4.82 | 4.84 | 4.85 | 4.90 | 4.88 | 4.86 | 4.85 | 4.73 | |
| HBDE | Best | 21 946 | 21 716 | 20 754 | 21 464 | 21 844 | 22 176 | <21 799 | <21 397 | 22 493 | 20 983 | 
| Mean | 21 910.1 | 21 615.1 | 20 689.2 | 21 410.6 | 21 754.1 | 22 170.4 | 21 746.5 | 21 188.2 | 22 415.1 | 20 983.0 | |
| Std | 72.07 | 63.60 | 101.19 | 39.10 | 46.01 | 6.86 | 35.31 | 43.80 | 54.37 | 0.00 | |
| AT | 14.12 | 14.08 | 14.79 | 14.29 | 14.68 | 13.85 | 14.11 | 13.76 | 13.95 | 14.17 | |
| Opt | 21 946 | 21 716 | 20 754 | 21 464 | 21 844 | 22 176 | 21 799 | 21 397 | 22 493 | 20 983 | |
表8 2个算法求解实例cb30.100.0~cb30.100.9的计算结果
Tab. 8 Calculation results of two algorithms solving instances cb30.100.0 - cb30.100.9
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 21 946 | 21 716 | 20 754 | 21 464 | 21 814 | 22 176 | 21 799 | 21 327 | 22 471 | 20 983 | 
| Mean | 21 946.0 | 21 583.7 | 20 682.9 | 21 420.9 | 21 786.4 | 22 176.0 | 21 746.5 | 21 220.2 | 22 430.7 | 20 982.6 | |
| Std | 0.00 | 24.99 | 23.70 | 20.53 | 28.12 | 0.00 | 44.24 | 70.83 | 50.52 | 3.88 | |
| AT | 4.74 | 5.60 | 4.82 | 4.84 | 4.85 | 4.90 | 4.88 | 4.86 | 4.85 | 4.73 | |
| HBDE | Best | 21 946 | 21 716 | 20 754 | 21 464 | 21 844 | 22 176 | <21 799 | <21 397 | 22 493 | 20 983 | 
| Mean | 21 910.1 | 21 615.1 | 20 689.2 | 21 410.6 | 21 754.1 | 22 170.4 | 21 746.5 | 21 188.2 | 22 415.1 | 20 983.0 | |
| Std | 72.07 | 63.60 | 101.19 | 39.10 | 46.01 | 6.86 | 35.31 | 43.80 | 54.37 | 0.00 | |
| AT | 14.12 | 14.08 | 14.79 | 14.29 | 14.68 | 13.85 | 14.11 | 13.76 | 13.95 | 14.17 | |
| Opt | 21 946 | 21 716 | 20 754 | 21 464 | 21 844 | 22 176 | 21 799 | 21 397 | 22 493 | 20 983 | |
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 115 894 | 114 667 | 116 591 | 115 225 | 116 413 | 115 639 | 113 899 | 114 230 | 115 319 | 116 955 | 
| Mean | 115 820.2 | 114 568.1 | 116 498.8 | 115 085.0 | 116 323.0 | 115 543.1 | 113 834.8 | 114 068.8 | 115 136.1 | 116 869.1 | |
| Std | 41.71 | 42.85 | 40.46 | 60.53 | 54.55 | 52.72 | 17.63 | 52.28 | 43.80 | 55.29 | |
| AT | 24.93 | 24.74 | 25.48 | 25.26 | 25.00 | 24.8 | 24.60 | 25.90 | 25.53 | 25.23 | |
| BGWO | Best | 115 814 | 114 701 | 116 531 | 115 125 | 116 312 | 115 586 | 113 939 | 114 118 | 115 153 | 116 939 | 
| Mean | — | — | — | — | — | — | — | — | — | — | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| MA/PL | Best | 115 609 | 114 426 | 116 357 | 114 933 | 116 146 | 115 331 | 113 621 | 113 850 | 115 049 | 116 724 | 
| Mean | 115 480.7 | 114 299.9 | 116 231.3 | 14 815.9 | 116 027.4 | 115 150.6 | 113 524.5 | 113 683.7 | 114 889.3 | 116 595.7 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 214.65 | 214.96 | 215.11 | 199.56 | 215.82 | 216.66 | 209.25 | 195.16 | 199.12 | 160.12 | |
| Opt | 116 056 | 114 810 | 116 741 | 115 354 | 116 525 | 115 741 | 114 181 | 114 348 | 115 419 | 117 116 | |
表9 3个算法求解实例cb30.500.0~cb30.500.9的计算结果
Tab. 9 Calculation results of three algorithms solving instances cb30.500.0 - cb30.500.9
| 算法 | 指标 | q | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| IRTEA-RO4 | Best | 115 894 | 114 667 | 116 591 | 115 225 | 116 413 | 115 639 | 113 899 | 114 230 | 115 319 | 116 955 | 
| Mean | 115 820.2 | 114 568.1 | 116 498.8 | 115 085.0 | 116 323.0 | 115 543.1 | 113 834.8 | 114 068.8 | 115 136.1 | 116 869.1 | |
| Std | 41.71 | 42.85 | 40.46 | 60.53 | 54.55 | 52.72 | 17.63 | 52.28 | 43.80 | 55.29 | |
| AT | 24.93 | 24.74 | 25.48 | 25.26 | 25.00 | 24.8 | 24.60 | 25.90 | 25.53 | 25.23 | |
| BGWO | Best | 115 814 | 114 701 | 116 531 | 115 125 | 116 312 | 115 586 | 113 939 | 114 118 | 115 153 | 116 939 | 
| Mean | — | — | — | — | — | — | — | — | — | — | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | — | — | — | — | — | — | — | — | — | — | |
| MA/PL | Best | 115 609 | 114 426 | 116 357 | 114 933 | 116 146 | 115 331 | 113 621 | 113 850 | 115 049 | 116 724 | 
| Mean | 115 480.7 | 114 299.9 | 116 231.3 | 14 815.9 | 116 027.4 | 115 150.6 | 113 524.5 | 113 683.7 | 114 889.3 | 116 595.7 | |
| Std | — | — | — | — | — | — | — | — | — | — | |
| AT | 214.65 | 214.96 | 215.11 | 199.56 | 215.82 | 216.66 | 209.25 | 195.16 | 199.12 | 160.12 | |
| Opt | 116 056 | 114 810 | 116 741 | 115 354 | 116 525 | 115 741 | 114 181 | 114 348 | 115 419 | 117 116 | |
| 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NB1 vs NB2 | 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NB1 vs NB2 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | 10 | 9 | 9 | 7 | 8 | 8 | HBDE | 7 | — | 5 | — | 8 | — | 27 vs 20 | |
| BAAA | — | 0 | 8 | — | — | — | 18 vs 8 | MA/PL | 10 | — | 6 | 0 | — | — | 26 vs 16 | 
| TR-BDS | 10 | — | — | 4 | — | — | 17 vs 14 | ABQPSO | 10 | 2 | 6 | 0 | — | — | 35 vs 18 | 
| BGWO | 9 | — | — | — | — | 2 | 18 vs 11 | 
表10 7个算法求得的最好Best数量
Tab. 10 Numbers of best Best values obtained by seven algorithms
| 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NB1 vs NB2 | 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NB1 vs NB2 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | 10 | 9 | 9 | 7 | 8 | 8 | HBDE | 7 | — | 5 | — | 8 | — | 27 vs 20 | |
| BAAA | — | 0 | 8 | — | — | — | 18 vs 8 | MA/PL | 10 | — | 6 | 0 | — | — | 26 vs 16 | 
| TR-BDS | 10 | — | — | 4 | — | — | 17 vs 14 | ABQPSO | 10 | 2 | 6 | 0 | — | — | 35 vs 18 | 
| BGWO | 9 | — | — | — | — | 2 | 18 vs 11 | 
| 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NS1 vs NS2 | 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NS1 vs NS2 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | 5 | 9 | 5 | 8 | 7 | 10 | MA/PL | 1 | 0 | 2 | — | — | — | 20 vs 3 | |
| BAAA | — | 0 | — | — | — | — | 9 vs 0 | ABQPSO | 3 | 1 | 1 | 9 | — | — | 27 vs 14 | 
| HBDE | 2 | — | 2 | — | 3 | — | 18 vs 7 | 
表11 5个算法求得的最好Std数量
Tab. 11 Numbers of best Std values obtained by five algorithms
| 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NS1 vs NS2 | 算法 | cb5.100 | cb5.500 | cb10.100 | cb10.500 | cb30.100 | cb30.500 | NS1 vs NS2 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IRTEA-RO4 | 5 | 9 | 5 | 8 | 7 | 10 | MA/PL | 1 | 0 | 2 | — | — | — | 20 vs 3 | |
| BAAA | — | 0 | — | — | — | — | 9 vs 0 | ABQPSO | 3 | 1 | 1 | 9 | — | — | 27 vs 14 | 
| HBDE | 2 | — | 2 | — | 3 | — | 18 vs 7 | 
| 1 | KELLERER H, PFERSCHY U, PISINGER D. Knapsack problems[M]. Berlin: Springer, 2004. | 
| 2 | NAWROCKI J R, COMPLAK W, BŁAŻEWICZ J, et al. The knapsack-lightening problem and its application to scheduling HRT tasks[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2009, 57(1): 71-77. | 
| 3 | BEAUJON G J, MARIN S P, McDONALD G C. Balancing and optimizing a portfolio of R&D projects[J]. Naval Research Logistics, 2001, 48(1): 18-40. | 
| 4 | WU C, WANG X, LIN J. Optimizations in project scheduling: a state-of-art survey[M]// XU H, WANG X. Optimization and control methods in industrial engineering and construction, ISCA 72. Dordrecht: Springer, 2014: 161-177. | 
| 5 | BALEV S, YANEV N, FRÉVILLE A, et al. A dynamic programming based reduction procedure for the multidimensional 0‑1 knapsack problem[J]. European Journal of Operational Research, 2008, 186(1): 63-76. | 
| 6 | SHIH W. A branch and bound method for the multiconstraint zero-one knapsack problem[J]. Journal of the Operational Research Society, 1979, 30(4): 369-378. | 
| 7 | HANAFI S, FREVILLE A. An efficient tabu search approach for the 0-1 multidimensional knapsack problem[J]. European Journal of Operational Research, 1998, 106(2/3): 659-675. | 
| 8 | VASQUEZ M, HAO J K. A hybrid approach for the 0-1 multidimensional knapsack problem[C]// Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 328-333. | 
| 9 | LAI X, HAO J K, GLOVER F, et al. A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[J]. Information Sciences, 2018, 436/437: 282-301. | 
| 10 | LAI X, HAO J K, FU Z H, et al. Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem[J]. Expert Systems with Applications, 2020, 149: No.113310. | 
| 11 | ZHANG X, WU C, LI J, et al. Binary artificial algae algorithm for multidimensional knapsack problems[J]. Applied Soft Computing, 2016, 43: 583-595. | 
| 12 | LIU J, WU C, CAO J, et al. A binary differential search algorithm for the 0-1 multidimensional knapsack problem[J]. Applied Mathematical Modelling, 2016, 40(23/24): 9788-9805. | 
| 13 | LUO K, ZHAO Q. A binary grey wolf optimizer for the multidimensional knapsack problem[J]. Applied Soft Computing, 2019, 83: No.105645. | 
| 14 | HE Y C, ZHANG X L, LI W B, et al. An efficient binary differential evolution algorithm for the multidimensional knapsack problem[J]. Engineering with Computers, 2021, 37: 745-761. | 
| 15 | LI Z, TANG L, LIU J. A memetic algorithm based on probability learning for solving the multidimensional knapsack problem[J]. IEEE Transactions on Cybernetics, 2020, 52(4): 2284-2299. | 
| 16 | LI X, FANG W, ZHU S, et al. An adaptive binary quantum-behaved particle swarm optimization algorithm for the multidimensional knapsack problem[J]. Swarm and Evolutionary Computation, 2024, 86: No.101494. | 
| 17 | HE Y, WANG X, GAO S. Ring Theory-Based Evolutionary Algorithm and its application to D{0-1}KP[J]. Applied Soft Computing, 2019, 77: 714-722. | 
| 18 | 耿素云,屈婉玲,王捍贫. 离散数学教程[M]. 北京:北京大学出版社, 2002: 285. | 
| GENG S Y, QU W L, WANG H P. Discrete mathematics course[M]. Beijing: Peking University Press, 2002: 285. | |
| 19 | CHU P C, BEASLEY J E. A genetic algorithm for the multidimensional knapsack problem[J]. Journal of Heuristics, 1998, 4: 63-86. | 
| 20 | ZHANG B, PAN Q K, ZHANG X L, et al. An effective hybrid harmony search-based algorithm for solving multidimensional knapsack problems[J]. Applied Soft Computing, 2015, 29: 288-297. | 
| 21 | 王凌,王圣尧,方晨. 一种求解多维背包问题的混合分布估计算法[J]. 控制与决策, 2011, 26(8): 1121-1125. | 
| WANG L, WANG S Y, FANG C. A hybrid distribution estimation algorithm for solving multidimensional knapsack problem[J]. Control and Decision, 2011, 26(8): 1121-1125. | |
| 22 | WANG L, WANG S Y, XU Y. An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem[J]. Expert Systems with Applications, 2012, 39(5): 5593-5599. | 
| 23 | 张寒崧,贺毅朝,王静红,等. 增强型群论优化算法求解折扣{0-1}背包问题[J]. 计算机科学与探索, 2024, 18(6): 1526-1542. | 
| ZHANG H S, HE Y C, WANG J H, et al. Enhanced group theory-based optimization algorithm for solving discounted {0-1} knapsack problem[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1526-1542. | |
| 24 | DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. | 
| [1] | 杨艳, 刘生建, 周永权. 贪心二进制狮群优化算法求解多维背包问题[J]. 计算机应用, 2020, 40(5): 1291-1294. | 
| [2] | 张晶, 吴虎胜. 改进二进制布谷鸟搜索算法求解多维背包问题[J]. 计算机应用, 2015, 35(1): 183-188. | 
| [3] | 倪晚成 刘连臣 吴澄. 网格工作流中基于商品市场的服务选择[J]. 计算机应用, 2007, (12): 2973-2975. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||