《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1595-1604.DOI: 10.11772/j.issn.1001-9081.2024050575

• 先进计算 • 上一篇    下一篇

基于新修复优化算子的改进环论优化算法求解多维背包问题

张寒崧1, 贺毅朝1,2(), 孙菲1, 陈国新1, 陈炬1   

  1. 1.河北地质大学 信息工程学院,石家庄 050031
    2.河北省光电信息与地球探测技术重点实验室(河北地质大学),石家庄 050031
  • 收稿日期:2024-05-10 修回日期:2024-07-20 接受日期:2024-07-22 发布日期:2024-07-25 出版日期:2025-05-10
  • 通讯作者: 贺毅朝
  • 作者简介:张寒崧(1999—),男,河北邯郸人,硕士研究生,主要研究方向:演化算法
    贺毅朝(1969—),男,河北晋州人,教授,硕士,主要研究方向:演化算法、组合优化、机器学习
    孙菲(1998—),女,河北邢台人,硕士研究生,主要研究方向:演化算法
    陈国新(2000—),男,河北沧州人,硕士研究生,主要研究方向:演化算法
    陈炬(2001—),男,湖南湘乡人,硕士研究生,主要研究方向:演化算法。
  • 基金资助:
    河北省自然科学基金资助项目(F2020403013);河北省高等学校科学技术研究项目(ZD2021016);河北地质大学2023年国家自然科学基金预研项目(KY202307);2024年河北省在读研究生创新能力培养资助项目(CXZZSS2024109)

Improved ring theory-based evolutionary algorithm with new repair optimization operator for solving multi-dimensional knapsack problem

Hansong ZHANG1, Yichao HE1,2(), Fei SUN1, Guoxin CHEN1, Ju CHEN1   

  1. 1.College of Information Engineering,Hebei GEO University,Shijiazhuang Hebei 050031,China
    2.Key Laboratory of Optoelectronic Information and Geo-detection Technology of Hebei Province (Hebei GEO University),Shijiazhuang Hebei 050031,China
  • Received:2024-05-10 Revised:2024-07-20 Accepted:2024-07-22 Online:2024-07-25 Published:2025-05-10
  • Contact: Yichao HE
  • About author:ZHANG Hansong, born in 1999, M. S. candidate. His research interests include evolutionary algorithm.
    HE Yichao, born in 1969, M. S., professor. His research interests include evolutionary algorithm, combinatorial optimization, machine learning.
    SUN Fei, born in 1998, M. S. candidate. Her research interests include evolutionary algorithm.
    CHEN Guoxin, born in 2000, M. S. candidate. His research interests include evolutionary algorithm.
    CHEN Ju, born in 2001, M. S. candidate. His research interests include evolutionary algorithm.
  • Supported by:
    Natural Science Foundation of Hebei Province(F2020403013);Science and Technology Project of Hebei Higher Educational Institutes(ZD2021016);Pre-research Project of National Natural Science Foundation of Hebei GEO University in 2023(KY202307);Innovative Ability Development Funding Project for Graduate Students of Hebei Province in 2024(CXZZSS2024109)

摘要:

为了利用环论优化算法(RTEA)高效求解多维背包问题(MKP),在分析已有修复优化算子——基于物品整体资源消耗伪效用比的修复优化算子RO1和基于物品各维度资源消耗价值密度的修复优化算子RO3不足的基础上,结合互补策略提出一种新的修复优化算子——加权修复优化算子RO4。随后,引入继承策略改进RTEA的全局进化算子,并基于Logistic模型提出适用于MKP的自适应反向变异算子,由此提出了求解MKP的算法IRTEA-RO4。为验证IRTEA-RO4的高效性,利用它求解MKP的114个国际通用基准实例,并与已有求解MKP的6个较先进算法进行比较,结果表明:对于小规模MKP实例,IRTEA-RO4的求解精度和求解速度均为最佳;对于大规模MKP实例,IRTEA-RO4求得的最好结果比6个对比算法的最好结果提高了21%~125%,而且平均性能与稳定性更优,计算速度更快。

关键词: 环论优化算法, 多维背包问题, 加权伪效用比, 继承策略, Logistic模型

Abstract:

To efficiently solve Multi-dimensional Knapsack Problem (MKP) using Ring Theory-based Evolutionary Algorithm (RTEA), after analyzing the inadequacies of existing repair operators: RO1 (based on the pseudo-utility ratio of items’ overall resource consumption) and RO3 (based on the value density across individual resource dimensions), a new weighted repair optimization operator named RO4 was proposed by integrating complementary strategy. Additionally, an inheritance strategy was introduced to improve the global evolutionary operator of RTEA, and a self-adaptive reverse mutation operator suitable for MKP was proposed on the basis of Logistic model, along with a new algorithm IRTEA-RO4 for solving MKP. To validate its efficiency, IRTEA-RO4 was tested on 114 internationally recognized MKP benchmark instances and compared with six state-of-the-art algorithms for solving MKP. Experimental results demonstrate that for small-scale MKP instances, IRTEA-RO4 achieves the highest solution accuracy and fastest computation speed; for large-scale MKP instances, IRTEA-RO4 outperforms the best results of the six existing algorithms by 21% to 125% in solution quality, while also exhibiting superior average performance, enhanced stability, and faster computational speed.

Key words: Ring Theory-based Evolutionary Algorithm (RTEA), Multi-dimensional Knapsack Problem (MKP), weighted pseudo-utility ratio, inheritance strategy, Logistic model

中图分类号: