《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1605-1612.DOI: 10.11772/j.issn.1001-9081.2024050585
• 先进计算 • 上一篇
收稿日期:
2024-05-11
修回日期:
2025-01-01
接受日期:
2025-01-03
发布日期:
2025-01-21
出版日期:
2025-05-10
通讯作者:
孙超利
作者简介:
谭瑛(1965—),女,湖南安化人,教授,硕士,主要研究方向:智能计算、数据库系统基金资助:
Ying TAN1, Xinyu REN1, Chaoli SUN1(), Sisi WANG2
Received:
2024-05-11
Revised:
2025-01-01
Accepted:
2025-01-03
Online:
2025-01-21
Published:
2025-05-10
Contact:
Chaoli SUN
About author:
TAN Ying, born in 1965, M. S., professor. Her research interests include intelligent computing, database system.Supported by:
摘要:
利用计算成本低廉的代理模型替换昂贵目标函数评价,以辅助进化算法对昂贵黑盒多目标优化问题的求解,近年来受到广泛关注。模型的准确度在代理模型辅助的多目标进化算法(MOEA)中发挥着重要作用,特别是当目标函数数量较多时,不准确的模型很容易引导算法朝错误的方向搜索;但目标函数评价昂贵,很难获得充裕的样本训练高质量的代理模型。因此,提出一种两阶段填充采样的半监督昂贵多目标优化算法(TISS-EMOA)。该算法引入半监督技术,选择部分无标签数据扩充训练数据集,从而提升模型的准确性;同时,提出两阶段选点的填充采样准则,以期在评价次数有限的情况下获得昂贵多目标优化问题的较优解集。为验证TISS-EMOA的有效性,在DTLZ1~DTLZ7基准测试问题以及车辆正面结构优化设计上进行了实验。与当前具有代表性的5种代理模型辅助进化多目标算法的对比结果显示,TISS-EMOA在28个基准测试问题中获得了25、28、28、24、23个更好或相当的改进的反转世代近距离(IGD+)。
中图分类号:
谭瑛, 任新宇, 孙超利, 王思思. 两阶段填充采样的半监督昂贵多目标优化算法[J]. 计算机应用, 2025, 45(5): 1605-1612.
Ying TAN, Xinyu REN, Chaoli SUN, Sisi WANG. Two-stage infill sampling-based semi-supervised expensive multi-objective optimization algorithm[J]. Journal of Computer Applications, 2025, 45(5): 1605-1612.
测试函数 | 性质 |
---|---|
DTLZ1 | 线性, 多模态, 可分离 |
DTLZ2 | 凹形, 单模态, 可分离 |
DTLZ3 | 线性, 多模态, 可分离 |
DTLZ4 | 凹形, 单模态, 有偏差, 可分离 |
DTLZ5 | 凹形, 退化, 单模态, 可分离 |
DTLZ6 | 凹形, 退化, 单模态, 有偏差, 可分离 |
DTLZ7 | 不连续, 多模态, 可分离 |
表1 DTLZ测试函数
Tab. 1 DTLZ test functions
测试函数 | 性质 |
---|---|
DTLZ1 | 线性, 多模态, 可分离 |
DTLZ2 | 凹形, 单模态, 可分离 |
DTLZ3 | 线性, 多模态, 可分离 |
DTLZ4 | 凹形, 单模态, 有偏差, 可分离 |
DTLZ5 | 凹形, 退化, 单模态, 可分离 |
DTLZ6 | 凹形, 退化, 单模态, 有偏差, 可分离 |
DTLZ7 | 不连续, 多模态, 可分离 |
问题 | M | |||
---|---|---|---|---|
DTLZ1 | 3 | 2.844 5E+2 (4.97E+1) | 2.847 4E+2 (3.42E+1) | 2.702 2E+2 (4.05E+1) |
8 | 1.521 3E+2 (2.71E+1) | 1.613 0e+2 (2.81E+1) | 1.580 7E+2 (2.59E+1) | |
DTLZ2 | 3 | 1.227 0E-1 (2.29E-2) | 1.189 3E-1 (1.80E-2) | 1.162 9E-1 (1.45E-2) |
8 | 4.778 0E-1 (5.46E-2) | 4.837 3E-1 (4.67E-2) | 4.390 3E-1 (5.06E-2) | |
DTLZ3 | 3 | 8.614 5E+2 (1.11E+2) | 8.739 5E+2 (1.20E+2) | 7.414 4E+2 (1.27E+2) |
8 | 5.727 2E+2 (1.17E+2) | 6.008 7E+2 (1.12E+2) | 5.167 9E+2 (1.08E+2) | |
DTLZ4 | 3 | 6.818 3E-1 (2.31E-1) | 6.442 6E-1 (1.84E-1) | 6.570 1E-1 (1.72E-1) |
8 | 9.021 6E-1 (1.13E-1) | 9.105 5E-1 (1.08E-1) | 8.544 2E-1 (1.35E-1) | |
DTLZ5 | 3 | 1.258 1E-1 (1.85E-2) | 1.278 9E-1 (2.27E-2) | 1.201 3E-1 (2.02E-2) |
8 | 2.220 0E-1 (3.03E-2) | 2.348 8E-1 (2.79E-2) | 2.016 2E-1 (3.53E-2) | |
DTLZ6 | 3 | 1.023 0E+1 (8.34E-1) | 9.832 9E+0 (1.11E+0) | 9.738 2E+0 (8.44E-1) |
8 | 7.566 1E+0 (5.02E-1) | 7.432 8E+0 (6.30E-1) | 7.325 6E+0 (7.38E-1) | |
DTLZ7 | 3 | 1.824 8E-1 (6.07E-2) | 1.711 9E-1 (3.23E-2) | 1.990 9E-1 (6.45E-2) |
8 | 7.448 2E-1 (9.07E-2) | 7.324 9E-1 (9.26E-2) | 6.892 1E-1 (8.15E-2) |
表2 不同umax值的结果对比
Tab. 2 Comparison of results with different umaxvalues
问题 | M | |||
---|---|---|---|---|
DTLZ1 | 3 | 2.844 5E+2 (4.97E+1) | 2.847 4E+2 (3.42E+1) | 2.702 2E+2 (4.05E+1) |
8 | 1.521 3E+2 (2.71E+1) | 1.613 0e+2 (2.81E+1) | 1.580 7E+2 (2.59E+1) | |
DTLZ2 | 3 | 1.227 0E-1 (2.29E-2) | 1.189 3E-1 (1.80E-2) | 1.162 9E-1 (1.45E-2) |
8 | 4.778 0E-1 (5.46E-2) | 4.837 3E-1 (4.67E-2) | 4.390 3E-1 (5.06E-2) | |
DTLZ3 | 3 | 8.614 5E+2 (1.11E+2) | 8.739 5E+2 (1.20E+2) | 7.414 4E+2 (1.27E+2) |
8 | 5.727 2E+2 (1.17E+2) | 6.008 7E+2 (1.12E+2) | 5.167 9E+2 (1.08E+2) | |
DTLZ4 | 3 | 6.818 3E-1 (2.31E-1) | 6.442 6E-1 (1.84E-1) | 6.570 1E-1 (1.72E-1) |
8 | 9.021 6E-1 (1.13E-1) | 9.105 5E-1 (1.08E-1) | 8.544 2E-1 (1.35E-1) | |
DTLZ5 | 3 | 1.258 1E-1 (1.85E-2) | 1.278 9E-1 (2.27E-2) | 1.201 3E-1 (2.02E-2) |
8 | 2.220 0E-1 (3.03E-2) | 2.348 8E-1 (2.79E-2) | 2.016 2E-1 (3.53E-2) | |
DTLZ6 | 3 | 1.023 0E+1 (8.34E-1) | 9.832 9E+0 (1.11E+0) | 9.738 2E+0 (8.44E-1) |
8 | 7.566 1E+0 (5.02E-1) | 7.432 8E+0 (6.30E-1) | 7.325 6E+0 (7.38E-1) | |
DTLZ7 | 3 | 1.824 8E-1 (6.07E-2) | 1.711 9E-1 (3.23E-2) | 1.990 9E-1 (6.45E-2) |
8 | 7.448 2E-1 (9.07E-2) | 7.324 9E-1 (9.26E-2) | 6.892 1E-1 (8.15E-2) |
问题 | M | TISS-EMOA-u | TISS-EMOA |
---|---|---|---|
DTLZ1 | 3 | 2.633 5E+2 (3.08E+1) = | 2.702 2E+2 (4.05E+1) |
8 | 1.545 0E+2 (2.33E+1) = | 1.580 7E+2 (2.59E+1) | |
DTLZ2 | 3 | 1.358 7E-1 (2.26E-2) - | 1.162 9E-1 (1.45E-2) |
8 | 5.312 9E-1 (5.82E-2) - | 4.390 3E-1 (5.06E-2) | |
DTLZ3 | 3 | 8.617 0E+2 (1.30E+2) - | 7.414 4E+2 (1.27E+2) |
8 | 5.661 4E+2 (1.29E+2) = | 5.167 9E+2 (1.08E+2) | |
DTLZ4 | 3 | 6.418 6 E-1 (1.39E-1) = | 6.570 1E-1 (1.72E-1) |
8 | 8.703 8 E-1 (1.22E-1) = | 8.544 2E-1 (1.35E-1) | |
DTLZ5 | 3 | 1.449 0E-1 (3.22E-2) - | 1.201 3E-1 (2.02E-2) |
8 | 2.813 6E-1 (6.02E-2) - | 2.016 2E-1 (3.53E-2) | |
DTLZ6 | 3 | 1.001 6E+1 (8.09E-1) = | 9.738 2E+0 (8.44E-1) |
8 | 7.700 7E+0 (6.12E-1) = | 7.325 6E+0 (7.38E-1) | |
DTLZ7 | 3 | 1.821 0E-1 (4.05E-2) = | 1.990 9E-1 (6.45E-2) |
8 | 7.577 8E-1 (1.73E-1) = | 6.892 1E-1 (8.15E-2) | |
+/-/= | 0/5/9 |
表3 TISS-EMOA-u与TISS-EMOA在测试函数上的IGD+
Tab. 3 IGD+ of TISS-EMOA-u and TISS-EMOA on test functions
问题 | M | TISS-EMOA-u | TISS-EMOA |
---|---|---|---|
DTLZ1 | 3 | 2.633 5E+2 (3.08E+1) = | 2.702 2E+2 (4.05E+1) |
8 | 1.545 0E+2 (2.33E+1) = | 1.580 7E+2 (2.59E+1) | |
DTLZ2 | 3 | 1.358 7E-1 (2.26E-2) - | 1.162 9E-1 (1.45E-2) |
8 | 5.312 9E-1 (5.82E-2) - | 4.390 3E-1 (5.06E-2) | |
DTLZ3 | 3 | 8.617 0E+2 (1.30E+2) - | 7.414 4E+2 (1.27E+2) |
8 | 5.661 4E+2 (1.29E+2) = | 5.167 9E+2 (1.08E+2) | |
DTLZ4 | 3 | 6.418 6 E-1 (1.39E-1) = | 6.570 1E-1 (1.72E-1) |
8 | 8.703 8 E-1 (1.22E-1) = | 8.544 2E-1 (1.35E-1) | |
DTLZ5 | 3 | 1.449 0E-1 (3.22E-2) - | 1.201 3E-1 (2.02E-2) |
8 | 2.813 6E-1 (6.02E-2) - | 2.016 2E-1 (3.53E-2) | |
DTLZ6 | 3 | 1.001 6E+1 (8.09E-1) = | 9.738 2E+0 (8.44E-1) |
8 | 7.700 7E+0 (6.12E-1) = | 7.325 6E+0 (7.38E-1) | |
DTLZ7 | 3 | 1.821 0E-1 (4.05E-2) = | 1.990 9E-1 (6.45E-2) |
8 | 7.577 8E-1 (1.73E-1) = | 6.892 1E-1 (8.15E-2) | |
+/-/= | 0/5/9 |
问题 | M | TISS-EMOA1 | TISS-EMOA2 | TISS-EMOA |
---|---|---|---|---|
DTLZ1 | 3 | 3.013 7E+2 (4.66E+1) = | 2.937 2E+2 (3.66E+1) - | 2.702 2E+2 (4.05E+1) |
8 | 1.525 6E+2 (2.44E+1) = | 1.587 4E+2 (2.55E+1) = | 1.580 7E+2 (2.59E+1) | |
DTLZ2 | 3 | 1.513 1E-1 (2.31E-2) - | 1.207 6E-1 (2.49E-2) = | 1.162 9E-1 (1.45E-2) |
8 | 4.690 3E-1 (6.26E-2) = | 4.778 4E-1 (5.78E-2) - | 4.390 3E-1 (5.06E-2) | |
DTLZ3 | 3 | 8.977 7E+2 (1.36E+2) - | 8.453 3E+2 (1.19E+2) - | 7.414 4E+2 (1.27E+2) |
8 | 5.451 3E+2 (6.18E+1) = | 5.733 9E+2 (9.21E+1) = | 5.167 9E+2 (1.08E+2) | |
DTLZ4 | 3 | 7.357 4E-1 (1.55E-1) = | 6.920 2E-1 (1.64E-1) = | 6.570 1E-1 (1.72E-1) |
8 | 8.716 4E-1 (1.34E-1) = | 9.298 7E-1 (1.32E-1) = | 8.544 2E-1 (1.35E-1) | |
DTLZ5 | 3 | 1.807 5E-1 (3.66E-2) - | 1.450 6E-1 (2.03E-2) - | 1.201 3E-1 (2.02E-2) |
8 | 2.652 1E-1 (4.07E-2) - | 2.337 2E-1 (3.65E-2) - | 2.016 2E-1 (3.53E-2) | |
DTLZ6 | 3 | 1.066 2E+1 (5.77E-1) - | 9.174 4E+0 (8.02E-1) + | 9.738 2E+0 (8.44E-1) |
8 | 8.415 2E+0 (6.50E-1) - | 7.449 4E+0 (7.83E-1) = | 7.325 6E+0 (7.38E-1) | |
DTLZ7 | 3 | 1.473 0E-1 (2.14E-2) + | 2.591 2E-1 (8.75E-2) - | 1.990 9E-1 (6.45E-2) |
8 | 6.931 4E-1 (6.61E-2) = | 7.506 6E-1 (1.25E-1) - | 6.892 1E-1 (8.15E-2) | |
+/-/= | 1/6/7 | 1/7/6 |
表4 两阶段选点策略对算法的影响
Tab. 4 Influence of two-stage point selection strategy on algorithm
问题 | M | TISS-EMOA1 | TISS-EMOA2 | TISS-EMOA |
---|---|---|---|---|
DTLZ1 | 3 | 3.013 7E+2 (4.66E+1) = | 2.937 2E+2 (3.66E+1) - | 2.702 2E+2 (4.05E+1) |
8 | 1.525 6E+2 (2.44E+1) = | 1.587 4E+2 (2.55E+1) = | 1.580 7E+2 (2.59E+1) | |
DTLZ2 | 3 | 1.513 1E-1 (2.31E-2) - | 1.207 6E-1 (2.49E-2) = | 1.162 9E-1 (1.45E-2) |
8 | 4.690 3E-1 (6.26E-2) = | 4.778 4E-1 (5.78E-2) - | 4.390 3E-1 (5.06E-2) | |
DTLZ3 | 3 | 8.977 7E+2 (1.36E+2) - | 8.453 3E+2 (1.19E+2) - | 7.414 4E+2 (1.27E+2) |
8 | 5.451 3E+2 (6.18E+1) = | 5.733 9E+2 (9.21E+1) = | 5.167 9E+2 (1.08E+2) | |
DTLZ4 | 3 | 7.357 4E-1 (1.55E-1) = | 6.920 2E-1 (1.64E-1) = | 6.570 1E-1 (1.72E-1) |
8 | 8.716 4E-1 (1.34E-1) = | 9.298 7E-1 (1.32E-1) = | 8.544 2E-1 (1.35E-1) | |
DTLZ5 | 3 | 1.807 5E-1 (3.66E-2) - | 1.450 6E-1 (2.03E-2) - | 1.201 3E-1 (2.02E-2) |
8 | 2.652 1E-1 (4.07E-2) - | 2.337 2E-1 (3.65E-2) - | 2.016 2E-1 (3.53E-2) | |
DTLZ6 | 3 | 1.066 2E+1 (5.77E-1) - | 9.174 4E+0 (8.02E-1) + | 9.738 2E+0 (8.44E-1) |
8 | 8.415 2E+0 (6.50E-1) - | 7.449 4E+0 (7.83E-1) = | 7.325 6E+0 (7.38E-1) | |
DTLZ7 | 3 | 1.473 0E-1 (2.14E-2) + | 2.591 2E-1 (8.75E-2) - | 1.990 9E-1 (6.45E-2) |
8 | 6.931 4E-1 (6.61E-2) = | 7.506 6E-1 (1.25E-1) - | 6.892 1E-1 (8.15E-2) | |
+/-/= | 1/6/7 | 1/7/6 |
问题 | M | CSEA | K-RVEA | EDNARMOEA | KTA2 | PBRVEA | TISS-EMOA |
---|---|---|---|---|---|---|---|
DTLZ1 | 3 | 2.982 2E+2 (4.73E+1)= | 3.436 2E+2 (3.97E+1)- | 3.511 8E+2 (3.11E+1)- | 2.420 4E+2 (3.73E+1)+ | 2.601 8E+2 (4.46E+1)= | 2.702 2E+2 (4.05E+1) |
5 | 2.101 3E+2 (3.84E+1)= | 2.681 8E+2 (2.82E+1)- | 2.626 5E+2 (2.39E+1)- | 1.886 6E+2 (3.32E+1)+ | 2.025 4E+2 (3.25E+1)= | 2.194 1E+2 (3.84E+1) | |
8 | 1.392 6E+2 (2.47E+1)+ | 1.679 5E+2 (1.88E+1)= | 1.909 5E+2 (3.16E+1)- | 1.329 5E+2 (2.25E+1)+ | 1.260 6E+2 (2.33E+1)+ | 1.580 7E+2 (2.59E+1) | |
10 | 1.008 3E+2 (2.61E+1)= | 1.275 8E+2 (2.88E+1)= | 1.432 4E+2 (2.02E+1)- | 1.031 1E+2 (2.60E+1)= | 9.028 7E+1 (2.13E+1)+ | 1.149 9E+2 (2.77E+1) | |
DTLZ2 | 3 | 6.737 5E-1 (7.62E-2)- | 8.474 6E-1 (6.70E-2)- | 8.621 1E-1 (5.42E-2)- | 2.173 4E-1 (7.94E-2)- | 3.708 4E-1 (6.24E-2)- | 1.162 9E-1 (1.45E-2) |
5 | 7.708 3E-1 (5.92E-2)- | 8.494 7E-1 (8.87E-2)- | 9.186 9E-1 (2.92E-2)- | 4.676 3E-1 (4.30E-2)- | 6.105 2E-1 (8.83E-2)- | 3.019 7E-1 (3.86E-2) | |
8 | 7.856 6E-1 (8.03E-2)- | 7.565 1E-1 (6.63E-2)- | 9.123 4E-1 (2.03E-2)- | 7.087 9E-1 (3.70E-2)- | 6.288 1E-1 (7.99E-2)- | 4.390 3E-1 (5.06E-2) | |
10 | 7.522 3E-1 (6.44E-2)- | 7.014 7E-1 (7.06E-2)- | 8.465 3E-1 (3.77E-2)- | 6.966 7E-1 (5.22E-2)- | 5.855 5E-1 (6.61E-2)- | 4.861 9E-1 (6.18E-2) | |
DTLZ3 | 3 | 8.705 9E+2 (9.24E+1)- | 9.405 6E+2 (1.24E+2)- | 1.055 6E+3 (1.41E+2)- | 7.097 6E+2 (1.05E+2)= | 8.361 6E+2 (1.34E+2)- | 7.414 4E+2 (1.27E+2) |
5 | 7.083 1E+2 (1.35E+2)= | 8.103 5E+2 (1.24E+2)= | 9.411 6E+2 (9.42E+1)- | 6.829 1E+2 (9.30E+1)= | 7.507 7E+2 (1.25E+2)= | 7.120 0E+2 (1.62E+2) | |
8 | 5.191 4E+2 (1.08E+2)= | 5.781 4E+2 (6.44E+1)- | 6.783 6E+2 (9.11E+1)- | 5.076 4E+2 (9.56E+1)= | 5.528 2E+2 (8.67E+1)= | 5.167 9E+2 (1.08E+2) | |
10 | 3.834 3E+2 (1.06E+2)= | 4.011 2E+2 (7.41E+1)= | 5.533 9E+2 (8.02E+1)- | 3.707 2E+2 (7.02E+1)= | 4.061 6E+2 (5.88E+1)= | 3.963 4E+2 (9.61E+1) | |
DTLZ4 | 3 | 6.936 7E-1 (1.24E-1)= | 9.450 7E-1 (1.37E-1)- | 6.669 2E-1 (1.66E-1)= | 6.019 1E-1 (1.59E-1)= | 7.174 3E-1 (1.73E-1)= | 6.570 1E-1 (1.72E-1) |
5 | 7.636 6E-1 (1.13E-1)= | 9.673 4E-1 (7.49E-2)= | 1.040 3E+0 (8.02E-2)= | 8.089 6E-1 (9.42E-2)= | 7.645 5E-1 (1.24E-1)= | 8.840 1E-1 (2.32E-1) | |
8 | 7.331 6E-1 (6.46E-2)+ | 9.008 3E-1 (8.99E-2)= | 9.972 2E-1 (4.81E-2)- | 7.735 1E-1 (9.84E-2)= | 7.135 7E-1 (1.23E-1)+ | 8.544 2E-1 (1.35E-1) | |
10 | 6.884 1E-1 (6.24E-2)+ | 8.495 8E-1 (7.40E-2)- | 9.391 0E-1 (4.56E-2)- | 7.400 1E-1 (6.97E-2)= | 6.908 0E-1 (1.16E-1)+ | 7.807 9E-1 (1.15E-1) | |
DTLZ5 | 3 | 5.982 0E-1 (8.14E-2)- | 7.275 5E-1 (7.69E-2)- | 7.760 3E-1 (7.77E-2)- | 2.117 9E-1 (7.37E-2)- | 2.605 5E-1 (5.84E-2 - | 1.201 3E-1 (2.02E-2) |
5 | 5.835 2E-1 (1.01E-1)- | 5.872 4E-1 (7.55E-2)- | 7.072 3E-1 (5.38E-2)- | 3.290 6E-1 (6.93E-2)- | 2.851 2E-1 (1.02E-1)- | 1.979 4E-1 (4.00E-2) | |
8 | 4.370 2E-1 (7.29E-2)- | 4.164 0E-1 (7.39E-2)- | 5.392 4E-1 (4.15E-2)- | 3.250 0E-1 (5.69E-2)- | 2.630 7E-1 (7.62E-2)- | 2.016 2E-1 (3.53E-2) | |
10 | 3.167 4E-1 (4.37E-2)- | 2.658 4E-1 (5.38E-2)- | 4.071 9E-1 (3.59E-2)- | 2.541 1E-1 (4.61E-2)- | 1.086 6E-1 (4.22E-2)+ | 1.880 6E-1 (4.67E-2) | |
DTLZ6 | 3 | 1.485 6E+1 (5.67E-1)- | 1.160 3E+1 (9.65E-1)- | 1.455 8E+1 (3.26E-1)- | 8.754 6E+0 (8.90E-1)+ | 1.041 7E+1 (3.58E-1)- | 9.738 2E+0 (8.44E-1) |
5 | 1.333 3E+1 (3.73E-1)- | 1.055 5E+1 (7.66E-1)- | 1.311 0E+1 (4.26E-1)- | 1.130 2E+1 (4.43E-1)- | 9.399 8E+0 (4.34E-1)- | 8.232 5E+0 (8.69E-1) | |
8 | 1.054 6E+1 (4.54E-1)- | 9.094 5E+0 (5.43E-1)- | 1.047 8E+1 (3.07E-1)- | 9.993 6E+0 (5.04E-1)- | 7.816 8E+0 (9.58E-1)= | 7.325 6E+0 (7.38E-1) | |
10 | 8.855 4E+0 (2.69E-1)- | 7.534 9E+0 (6.98E-1)- | 8.745 6E+0 (3.66E-1)- | 8.308 6E+0 (5.18E-1)- | 7.051 5E+0 (6.79E-1)- | 5.939 6E+0 (6.77E-1) | |
DTLZ7 | 3 | 5.730 0E+0 (9.62E-1)- | 2.447 6E-1 (4.62E-2)- | 2.570 4E+0 (4.65E-1)- | 2.935 7E-1 (2.31E-1)= | 4.429 8E-1 (1.31E-1)- | 1.990 9E-1 (6.45E-2) |
5 | 1.089 2E+1 (1.83E+0)- | 6.565 4E-1 (1.10E-1)- | 3.865 1E+0 (1.06E+0)- | 7.817 7E-1 (3.91E-1)- | 1.045 1E+0 (4.19E-1)- | 5.367 4E-1 (6.42E-2) | |
8 | 2.023 3E+1 (1.84E+0)- | 1.191 5E+0 (2.86E-1)- | 3.616 1E+0 (1.34E+0)- | 1.600 9E+0 (6.10E-1)- | 1.477 1E+0 (5.33E-1)- | 6.892 1E-1 (8.15E-2) | |
10 | 2.432 8E+1 (3.12E+0)- | 1.604 7E+0 (4.82E-1)- | 4.043 7E+0 (1.25E+0)- | 2.246 7E+0 (5.37E-1)- | 1.962 8E+0 (6.99E-1)- | 1.002 4E+0 (3.77E-2) | |
+/-/= | 3/17/8 | 0/22/6 | 0/26/2 | 4/14/10 | 5/15/8 |
表5 TISS-EMOA以及5种对比算法在测试函数上的IGD+
Tab. 5 IGD+ of TISS-EMOA and five comparison algorithms on test functions
问题 | M | CSEA | K-RVEA | EDNARMOEA | KTA2 | PBRVEA | TISS-EMOA |
---|---|---|---|---|---|---|---|
DTLZ1 | 3 | 2.982 2E+2 (4.73E+1)= | 3.436 2E+2 (3.97E+1)- | 3.511 8E+2 (3.11E+1)- | 2.420 4E+2 (3.73E+1)+ | 2.601 8E+2 (4.46E+1)= | 2.702 2E+2 (4.05E+1) |
5 | 2.101 3E+2 (3.84E+1)= | 2.681 8E+2 (2.82E+1)- | 2.626 5E+2 (2.39E+1)- | 1.886 6E+2 (3.32E+1)+ | 2.025 4E+2 (3.25E+1)= | 2.194 1E+2 (3.84E+1) | |
8 | 1.392 6E+2 (2.47E+1)+ | 1.679 5E+2 (1.88E+1)= | 1.909 5E+2 (3.16E+1)- | 1.329 5E+2 (2.25E+1)+ | 1.260 6E+2 (2.33E+1)+ | 1.580 7E+2 (2.59E+1) | |
10 | 1.008 3E+2 (2.61E+1)= | 1.275 8E+2 (2.88E+1)= | 1.432 4E+2 (2.02E+1)- | 1.031 1E+2 (2.60E+1)= | 9.028 7E+1 (2.13E+1)+ | 1.149 9E+2 (2.77E+1) | |
DTLZ2 | 3 | 6.737 5E-1 (7.62E-2)- | 8.474 6E-1 (6.70E-2)- | 8.621 1E-1 (5.42E-2)- | 2.173 4E-1 (7.94E-2)- | 3.708 4E-1 (6.24E-2)- | 1.162 9E-1 (1.45E-2) |
5 | 7.708 3E-1 (5.92E-2)- | 8.494 7E-1 (8.87E-2)- | 9.186 9E-1 (2.92E-2)- | 4.676 3E-1 (4.30E-2)- | 6.105 2E-1 (8.83E-2)- | 3.019 7E-1 (3.86E-2) | |
8 | 7.856 6E-1 (8.03E-2)- | 7.565 1E-1 (6.63E-2)- | 9.123 4E-1 (2.03E-2)- | 7.087 9E-1 (3.70E-2)- | 6.288 1E-1 (7.99E-2)- | 4.390 3E-1 (5.06E-2) | |
10 | 7.522 3E-1 (6.44E-2)- | 7.014 7E-1 (7.06E-2)- | 8.465 3E-1 (3.77E-2)- | 6.966 7E-1 (5.22E-2)- | 5.855 5E-1 (6.61E-2)- | 4.861 9E-1 (6.18E-2) | |
DTLZ3 | 3 | 8.705 9E+2 (9.24E+1)- | 9.405 6E+2 (1.24E+2)- | 1.055 6E+3 (1.41E+2)- | 7.097 6E+2 (1.05E+2)= | 8.361 6E+2 (1.34E+2)- | 7.414 4E+2 (1.27E+2) |
5 | 7.083 1E+2 (1.35E+2)= | 8.103 5E+2 (1.24E+2)= | 9.411 6E+2 (9.42E+1)- | 6.829 1E+2 (9.30E+1)= | 7.507 7E+2 (1.25E+2)= | 7.120 0E+2 (1.62E+2) | |
8 | 5.191 4E+2 (1.08E+2)= | 5.781 4E+2 (6.44E+1)- | 6.783 6E+2 (9.11E+1)- | 5.076 4E+2 (9.56E+1)= | 5.528 2E+2 (8.67E+1)= | 5.167 9E+2 (1.08E+2) | |
10 | 3.834 3E+2 (1.06E+2)= | 4.011 2E+2 (7.41E+1)= | 5.533 9E+2 (8.02E+1)- | 3.707 2E+2 (7.02E+1)= | 4.061 6E+2 (5.88E+1)= | 3.963 4E+2 (9.61E+1) | |
DTLZ4 | 3 | 6.936 7E-1 (1.24E-1)= | 9.450 7E-1 (1.37E-1)- | 6.669 2E-1 (1.66E-1)= | 6.019 1E-1 (1.59E-1)= | 7.174 3E-1 (1.73E-1)= | 6.570 1E-1 (1.72E-1) |
5 | 7.636 6E-1 (1.13E-1)= | 9.673 4E-1 (7.49E-2)= | 1.040 3E+0 (8.02E-2)= | 8.089 6E-1 (9.42E-2)= | 7.645 5E-1 (1.24E-1)= | 8.840 1E-1 (2.32E-1) | |
8 | 7.331 6E-1 (6.46E-2)+ | 9.008 3E-1 (8.99E-2)= | 9.972 2E-1 (4.81E-2)- | 7.735 1E-1 (9.84E-2)= | 7.135 7E-1 (1.23E-1)+ | 8.544 2E-1 (1.35E-1) | |
10 | 6.884 1E-1 (6.24E-2)+ | 8.495 8E-1 (7.40E-2)- | 9.391 0E-1 (4.56E-2)- | 7.400 1E-1 (6.97E-2)= | 6.908 0E-1 (1.16E-1)+ | 7.807 9E-1 (1.15E-1) | |
DTLZ5 | 3 | 5.982 0E-1 (8.14E-2)- | 7.275 5E-1 (7.69E-2)- | 7.760 3E-1 (7.77E-2)- | 2.117 9E-1 (7.37E-2)- | 2.605 5E-1 (5.84E-2 - | 1.201 3E-1 (2.02E-2) |
5 | 5.835 2E-1 (1.01E-1)- | 5.872 4E-1 (7.55E-2)- | 7.072 3E-1 (5.38E-2)- | 3.290 6E-1 (6.93E-2)- | 2.851 2E-1 (1.02E-1)- | 1.979 4E-1 (4.00E-2) | |
8 | 4.370 2E-1 (7.29E-2)- | 4.164 0E-1 (7.39E-2)- | 5.392 4E-1 (4.15E-2)- | 3.250 0E-1 (5.69E-2)- | 2.630 7E-1 (7.62E-2)- | 2.016 2E-1 (3.53E-2) | |
10 | 3.167 4E-1 (4.37E-2)- | 2.658 4E-1 (5.38E-2)- | 4.071 9E-1 (3.59E-2)- | 2.541 1E-1 (4.61E-2)- | 1.086 6E-1 (4.22E-2)+ | 1.880 6E-1 (4.67E-2) | |
DTLZ6 | 3 | 1.485 6E+1 (5.67E-1)- | 1.160 3E+1 (9.65E-1)- | 1.455 8E+1 (3.26E-1)- | 8.754 6E+0 (8.90E-1)+ | 1.041 7E+1 (3.58E-1)- | 9.738 2E+0 (8.44E-1) |
5 | 1.333 3E+1 (3.73E-1)- | 1.055 5E+1 (7.66E-1)- | 1.311 0E+1 (4.26E-1)- | 1.130 2E+1 (4.43E-1)- | 9.399 8E+0 (4.34E-1)- | 8.232 5E+0 (8.69E-1) | |
8 | 1.054 6E+1 (4.54E-1)- | 9.094 5E+0 (5.43E-1)- | 1.047 8E+1 (3.07E-1)- | 9.993 6E+0 (5.04E-1)- | 7.816 8E+0 (9.58E-1)= | 7.325 6E+0 (7.38E-1) | |
10 | 8.855 4E+0 (2.69E-1)- | 7.534 9E+0 (6.98E-1)- | 8.745 6E+0 (3.66E-1)- | 8.308 6E+0 (5.18E-1)- | 7.051 5E+0 (6.79E-1)- | 5.939 6E+0 (6.77E-1) | |
DTLZ7 | 3 | 5.730 0E+0 (9.62E-1)- | 2.447 6E-1 (4.62E-2)- | 2.570 4E+0 (4.65E-1)- | 2.935 7E-1 (2.31E-1)= | 4.429 8E-1 (1.31E-1)- | 1.990 9E-1 (6.45E-2) |
5 | 1.089 2E+1 (1.83E+0)- | 6.565 4E-1 (1.10E-1)- | 3.865 1E+0 (1.06E+0)- | 7.817 7E-1 (3.91E-1)- | 1.045 1E+0 (4.19E-1)- | 5.367 4E-1 (6.42E-2) | |
8 | 2.023 3E+1 (1.84E+0)- | 1.191 5E+0 (2.86E-1)- | 3.616 1E+0 (1.34E+0)- | 1.600 9E+0 (6.10E-1)- | 1.477 1E+0 (5.33E-1)- | 6.892 1E-1 (8.15E-2) | |
10 | 2.432 8E+1 (3.12E+0)- | 1.604 7E+0 (4.82E-1)- | 4.043 7E+0 (1.25E+0)- | 2.246 7E+0 (5.37E-1)- | 1.962 8E+0 (6.99E-1)- | 1.002 4E+0 (3.77E-2) | |
+/-/= | 3/17/8 | 0/22/6 | 0/26/2 | 4/14/10 | 5/15/8 |
问题 | M | PBRVEA | PBRVEA-SSL | K-RVEA | K-RVEA-SSL |
---|---|---|---|---|---|
DTLZ1 | 3 | 2.601 8E+2 (4.46E+1)= | 2.418 9E+2 (5.68E+1) | 3.436 2E+2 (3.97E+1)= | 3.376 0E+2 (4.87E+1) |
8 | 1.260 6E+2 (2.33E+1)= | 1.365 8E+2 (2.57E+1) | 1.679 5E+2 (1.88E+1)= | 1.612 0E+2 (2.07E+1) | |
DTLZ2 | 3 | 3.708 4E-1 (6.24E-2)- | 1.433 5E-1 (2.56E-2) | 8.474 6E-1 (6.70E-2)- | 4.367 1E-1 (7.15E-2) |
8 | 6.288 1E-1 (7.99E-2)= | 6.668 1E-1 (9.71E-2) | 7.565 1E-1 (6.63E-2)- | 5.532 2E-1 (6.86E-2) | |
DTLZ3 | 3 | 8.361 6E+2 (1.34E+2)- | 7.341 6E+2 (1.19E+2) | 9.405 6E+2 (1.24E+2)= | 9.723 9E+2 (1.37E+2) |
8 | 5.528 2E+2 (8.67E+1)= | 5.320 0E+2 (9.68E+1) | 5.781 4E+2 (6.44E+1)= | 6.138 8E+2 (7.22E+1) | |
DTLZ4 | 3 | 7.174 3E-1 (1.73E-1)- | 5.866 6E-1 (1.40E-1) | 9.450 7E-1 (1.37E-1)- | 7.669 6E-1 (1.83E-1) |
8 | 7.135 7E-1 (1.23E-1)= | 7.088 6E-1 (1.33E-1) | 9.008 3E-1 (8.99E-2)- | 7.777 1E-1 (1.30E-1) | |
DTLZ5 | 3 | 2.605 5E-1 (5.84E-2)- | 1.212 2E-1 (2.63E-2) | 7.275 5E-1 (7.69E-2)- | 3.591 3E-1 (8.68E-2) |
8 | 2.630 7E-1 (7.62E-2)= | 2.425 7E-1 (7.85E-2) | 4.164 0E-1 (7.39E-2)- | 1.893 6E-1 (4.05E-2) | |
DTLZ6 | 3 | 1.041 7E+1 (3.58E-1)- | 9.588 3E+0 (1.02E+0) | 1.160 3E+1 (9.65E-1)= | 1.134 7E+1 (7.28E-1) |
8 | 7.816 8E+0 (9.58E-1)= | 7.853 2E+0 (9.06E-1) | 9.094 5E+0 (5.43E-1)- | 8.406 5E+0 (7.43E-1) | |
DTLZ7 | 3 | 4.429 8E-1 (1.31E-1)- | 2.978 3E-1 (6.62E-2) | 2.447 6E-1 (4.62E-2)+ | 2.886 0E-1 (5.93E-2) |
8 | 1.477 1E+0 (5.33E-1)= | 1.502 7E+0 (6.99E-1) | 1.191 5E+0 (2.86E-1)- | 1.018 3E+0 (1.05E-1) | |
+/-/= | 0/6/8 | 1/8/5 |
表6 PBRVEA-SSL与K-RVEA-SSL及其原始算法在DTLZ 1~7上的IGD+
Tab. 6 IGD+ of PBRVEA-SSL, K-RVEA-SSL and their original algorithms on DTLZ 1~7
问题 | M | PBRVEA | PBRVEA-SSL | K-RVEA | K-RVEA-SSL |
---|---|---|---|---|---|
DTLZ1 | 3 | 2.601 8E+2 (4.46E+1)= | 2.418 9E+2 (5.68E+1) | 3.436 2E+2 (3.97E+1)= | 3.376 0E+2 (4.87E+1) |
8 | 1.260 6E+2 (2.33E+1)= | 1.365 8E+2 (2.57E+1) | 1.679 5E+2 (1.88E+1)= | 1.612 0E+2 (2.07E+1) | |
DTLZ2 | 3 | 3.708 4E-1 (6.24E-2)- | 1.433 5E-1 (2.56E-2) | 8.474 6E-1 (6.70E-2)- | 4.367 1E-1 (7.15E-2) |
8 | 6.288 1E-1 (7.99E-2)= | 6.668 1E-1 (9.71E-2) | 7.565 1E-1 (6.63E-2)- | 5.532 2E-1 (6.86E-2) | |
DTLZ3 | 3 | 8.361 6E+2 (1.34E+2)- | 7.341 6E+2 (1.19E+2) | 9.405 6E+2 (1.24E+2)= | 9.723 9E+2 (1.37E+2) |
8 | 5.528 2E+2 (8.67E+1)= | 5.320 0E+2 (9.68E+1) | 5.781 4E+2 (6.44E+1)= | 6.138 8E+2 (7.22E+1) | |
DTLZ4 | 3 | 7.174 3E-1 (1.73E-1)- | 5.866 6E-1 (1.40E-1) | 9.450 7E-1 (1.37E-1)- | 7.669 6E-1 (1.83E-1) |
8 | 7.135 7E-1 (1.23E-1)= | 7.088 6E-1 (1.33E-1) | 9.008 3E-1 (8.99E-2)- | 7.777 1E-1 (1.30E-1) | |
DTLZ5 | 3 | 2.605 5E-1 (5.84E-2)- | 1.212 2E-1 (2.63E-2) | 7.275 5E-1 (7.69E-2)- | 3.591 3E-1 (8.68E-2) |
8 | 2.630 7E-1 (7.62E-2)= | 2.425 7E-1 (7.85E-2) | 4.164 0E-1 (7.39E-2)- | 1.893 6E-1 (4.05E-2) | |
DTLZ6 | 3 | 1.041 7E+1 (3.58E-1)- | 9.588 3E+0 (1.02E+0) | 1.160 3E+1 (9.65E-1)= | 1.134 7E+1 (7.28E-1) |
8 | 7.816 8E+0 (9.58E-1)= | 7.853 2E+0 (9.06E-1) | 9.094 5E+0 (5.43E-1)- | 8.406 5E+0 (7.43E-1) | |
DTLZ7 | 3 | 4.429 8E-1 (1.31E-1)- | 2.978 3E-1 (6.62E-2) | 2.447 6E-1 (4.62E-2)+ | 2.886 0E-1 (5.93E-2) |
8 | 1.477 1E+0 (5.33E-1)= | 1.502 7E+0 (6.99E-1) | 1.191 5E+0 (2.86E-1)- | 1.018 3E+0 (1.05E-1) | |
+/-/= | 0/6/8 | 1/8/5 |
算法 | HV | 算法 | HV |
---|---|---|---|
CSEA | 3.600 7E-2 (4.03E-4) - | KTA2 | 3.801 4E-2 (4.73E-4) = |
K-RVEA | 3.474 5E-2 (4.02E-4) - | PBRVEA | 3.521 9E-2 (9.54E-4) - |
EDNARMOEA | 3.585 7E-2 (3.83E-4) - | TISS-EMOA | 3.815 2E-2 (4.02E-4) |
表7 各算法在车辆正面结构优化设计上的测试结果
Tab.7 Test results of different algorithms on vehicle frontal structure optimization design
算法 | HV | 算法 | HV |
---|---|---|---|
CSEA | 3.600 7E-2 (4.03E-4) - | KTA2 | 3.801 4E-2 (4.73E-4) = |
K-RVEA | 3.474 5E-2 (4.02E-4) - | PBRVEA | 3.521 9E-2 (9.54E-4) - |
EDNARMOEA | 3.585 7E-2 (3.83E-4) - | TISS-EMOA | 3.815 2E-2 (4.02E-4) |
1 | WANG L, LI Z, ADENUTSI C D, et al. A novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-Ⅱ algorithm[J]. Journal of Petroleum Science and Engineering, 2021, 196: No.107694. |
2 | CHENG R, RODEMANN T, FISCHER M, et al. Evolutionary many-objective optimization of hybrid electric vehicle control: from general optimization to preference articulation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2017, 1(2): 97-111. |
3 | LIN Q, LI J, DU Z, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247(3): 732-744. |
4 | QIN S, SUN C, JIN Y, et al. Bayesian approaches to surrogate-assisted evolutionary multi-objective optimization: a comparative study[C]// Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2019: 2074-2080. |
5 | SUN C, JIN Y, CHENG R, et al. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 644-660. |
6 | HAYKIN S. Neural networks: a comprehensive foundation[M]. Upper Saddle River, NJ: Prentice Hall, 1994: 768. |
7 | 王浩,孙超利,张国晨.基于估值不确定度排序顺序均值采样的昂贵高维多目标进化算法[J].控制与决策,2023,38(12): 3317-3326. |
WANG H, SUN C L, ZHANG G C. Sampling based on the mean value of ranking on approximation uncertainties for expensive many-objective evolutionary algorithm [J]. Control and Decision, 2023, 38(12): 3317-3326. | |
8 | 马勇健,史旭华,王佩瑶.基于两阶段搜索与动态资源分配的约束多目标进化算法[J].计算机应用,2024,44(1):269-277. |
MA Y J, SHI X H, WANG P Y. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation[J]. Journal of Computer Applications, 2024, 44(1): 269-277. | |
9 | PAN L, HE C, TIAN Y, et al. A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 74-88. |
10 | QIN S, SUN C, LIU Q, et al. A performance indicator based infill criterion for expensive multi-/many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023,27(4):1085-1099. |
11 | CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learning[book reviews][J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542-542. |
12 | KINGMA D P, REZENDE D J, MOHAMED S, et al. Semi-supervised learning with deep generative models[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014, 3581-3589. |
13 | VAN ENGELEN J E, HOOS H H. A survey on semi-supervised learning[J]. Machine Learning, 2020, 109: 373-440. |
14 | GU S, JIN Y. Multi-train: a semi-supervised heterogeneous ensemble classifier[J]. Neurocomputing, 2017, 249: 202-211. |
15 | LI M, ZHOU Z H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples[J]. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2007, 37(6): 1088-1098. |
16 | SUN X, GONG D, JIN Y, et al. A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 685-698. |
17 | HUANG P, WANG H, JIN Y. Offline data-driven evolutionary optimization based on tri-training[J]. Swarm and Evolutionary Computation,2021, 60: No.100800. |
18 | SUN C, JIN Y, TAN Y. Semi-supervised learning assisted particle swarm optimization of computationally expensive problems[C]// Proceedings of the 2018 Genetic and Evolutionary Computation Conference. New York: ACM, 2018: 45-52. |
19 | CHENG R, JIN Y, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. |
20 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. |
21 | YU H, KANG L, TAN Y, et al. A multi-model assisted differential evolution algorithm for computationally expensive optimization problems[J]. Complex and Intelligent Systems, 2021, 7: 2347-2371. |
22 | YUAN Y, XU H, WANG B. An improved NSGA-Ⅲ procedure for evolutionary many-objective optimization[C]// Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2014: 661-668. |
23 | ZHANG Q, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. |
24 | DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems[C]// Proceedings of the 2002 Congress on Evolutionary Computation — Volume 1. Piscataway: IEEE, 2002: 825-830. |
25 | ISHIBUCHI H, MASUDA H, TANIGAKI Y, et al. Modified distance calculation in generational distance and inverted generational distance[C]// Proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization, LNCS 9019. Cham: Springer, 2015: 110-125. |
26 | TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: a Matlab platform for evolutionary multi-objective optimization [educational forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. |
27 | CHUGH T, JIN Y, MIETTINEN K, et al. A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142. |
28 | GUO D, WANG X, GAO K, et al. Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2084-2097. |
29 | SONG Z, WANG H, HE C, et al. A Kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1013-1027. |
30 | SONG Z, WANG H, XU H. A framework for expensive many-objective optimization with Pareto-based bi-indicator infill sampling criterion[J]. Memetic Computing, 2022, 14: 179-191. |
31 | DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601. |
32 | COELLO C A C, CORTÉS N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6: 163-190. |
[1] | 陈鹏宇, 聂秀山, 李南君, 李拓. 基于时空解耦和区域鲁棒性增强的半监督视频目标分割方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1379-1386. |
[2] | 张英俊, 李牛牛, 谢斌红, 张睿, 陆望东. 课程学习指导下的半监督目标检测框架[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2326-2333. |
[3] | 周妍, 李阳. 用于脑卒中病灶分割的具有注意力机制的校正交叉伪监督方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1942-1948. |
[4] | 赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1415-1422. |
[5] | 姜涛, 梁振宇, 程然, 金耀初. GPU加速的演化算法求解多目标流水车间调度问题[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1364-1371. |
[6] | 刘晓芳, 张军. 概率驱动的动态多目标多智能体协同调度进化优化[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1372-1377. |
[7] | 高麟, 周宇, 邝得互. 进化双层自适应局部特征选择[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1408-1414. |
[8] | 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1386-1392. |
[9] | 李建强, 何舟. 面向多行程取送货车辆路径问题的混合NSGA-Ⅱ[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1187-1194. |
[10] | 张帅华, 张淑芬, 周明川, 徐超, 陈学斌. 基于半监督联邦学习的恶意流量检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3487-3494. |
[11] | 黄杰, 武瑞梓, 李均利. 高效的自适应复杂网络鲁棒性优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3530-3539. |
[12] | 张睿, 潘俊铭, 白晓露, 胡静, 张荣国, 张鹏云. 面向深度分类模型超参数自优化的代理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3021-3031. |
[13] | 马勇健, 史旭华, 王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 269-277. |
[14] | 王瑞琪, 纪淑娟, 曹宁, 郭亚杰. 基于一致性训练的半监督虚假招聘广告检测模型[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2932-2939. |
[15] | 徐赛娟, 裴镇宇, 林佳炜, 刘耿耿. 基于多阶段搜索的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2345-2351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||