1 |
McCARTY P J, PINES A R, SUSSMAN B L, et al. Resting state functional magnetic resonance imaging elucidates neurotransmitter deficiency in autism spectrum disorder[J]. Journal of Personalized Medicine, 2021, 11( 10): No. 969.
|
2 |
ZHU X, YUAN F, ZHOU G, et al. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity[J]. Brain Imaging and Behavior, 2021, 15( 3): 1279- 1289.
|
3 |
余仁萍, 余海飞, 万红. 基于静息态功能磁共振成像的精神分裂症脑网络特征分类研究[J]. 生物医学工程学杂志, 2020, 37( 4): 661- 669.
|
|
YU R P, YU H F, WAN H. Research on brain network for schizophrenia classification based on resting-state functional magnetic resonance imaging[J]. Journal of Biomedical Engineering, 2020, 37( 4): 661- 669.
|
4 |
LI G, LIU Y, ZHENG Y, et al. Large-scale dynamic causal modeling of major depressive disorder based on resting-state functional magnetic resonance imaging[J]. Human Brain Mapping, 2020, 41( 4): 865- 881.
|
5 |
JENKINSON M, CHAPPELL M. Introduction to neuroimaging analysis[M]. Oxford: Oxford University Press, 2018.
|
6 |
QIU Y-H, HUANG Z-H, GAO Y-Y, et al. Alterations in intrinsic functional networks in Parkinson's disease patients with depression: a resting-state functional magnetic resonance imaging study[J]. CNS Neuroscience and Therapeutics, 2021, 27( 3): 289- 298.
|
7 |
ZHAO F, ZHANG H, REKIK I, et al. Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional MRI[J]. Frontiers in Human Neuroscience, 2018, 12: No. 184.
|
8 |
RONICKO J F A, THOMAS J, THANGAVEL P, et al. Diagnostic classification of autism using resting-state fMRI data improves with full correlation functional brain connectivity compared to partial correlation[J]. Journal of Neuroscience Methods, 2020, 345: No. 108884.
|
9 |
MAHADEVAN A S, TOOLEY U A, BERTOLERO M A, et al. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data[J]. NeuroImage, 2021, 241: No. 118408.
|
10 |
LI W, ZHANG L, QIAO L, et al. Toward a better estimation of functional brain network for mild cognitive impairment identification: a transfer learning view[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24( 4): 1160- 1168.
|
11 |
QIAO L, ZHANG L, CHEN S, et al. Data-driven graph construction and graph learning: a review[J]. Neurocomputing, 2018, 312: 336- 351.
|
12 |
BIJSTERBOSCH J, SMITH S, BECKMANN C F. Introduction to resting state fMRI functional connectivity[M]. Oxford: Oxford University Press, 2017.
|
13 |
LI W, WANG Z, ZHANG L, et al. Remodeling Pearson's correlation for functional brain network estimation and autism spectrum disorder identification[J]. Frontiers in Neuroinformatics, 2017, 11: No. 55.
|
14 |
QIAO L, ZHANG H, KIM M, et al. Estimating functional brain networks by incorporating a modularity prior[J]. NeuroImage, 2016, 141: 399- 407.
|
15 |
WANG J, ZHANG L, WANG Q, et al. Multi-class ASD classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation[J]. IEEE Transactions on Medical Imaging, 2020, 39( 10): 3137- 3147.
|
16 |
XUE Y, ZHANG Y, ZHANG L, et al. Learning brain functional networks with latent temporal dependency for MCI identification[J]. IEEE Transactions on Biomedical Engineering, 2022, 69( 2): 590- 601.
|
17 |
LI W, QIAO L, ZHANG L, et al. Functional brain network estimation with time series self-scrubbing[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23( 6): 2494- 2504.
|
18 |
SU H, ZHANG L, QIAO L, et al. Estimating high-order brain functional networks by correlation-preserving embedding[J]. Medical and Biological Engineering and Computing, 2022, 60( 10): 2813- 2823.
|
19 |
COMBETTES P L, PESQUET J C. Proximal splitting methods in signal processing[M]// Fixed-point algorithms for inverse problems in science and engineering, SOIA 49. New York: Springer, 2011: 185- 212.
|
20 |
TZOURIO-MAZOYER N, LAMDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15( 1): 273- 289.
|
21 |
CHEN H, ZHANG Y, ZHANG L, et al. Estimating brain functional networks based on adaptively-weighted fMRI signals for MCI identification[J]. Frontiers in Aging Neuroscience, 2020, 12: No. 595322.
|
22 |
SCHULTZ S A, BOOTS E A, DARST B F, et al. Cardiorespiratory fitness alters the influence of a polygenic risk score on biomarkers of AD[J]. Neurology, 2017, 88( 17): 1650- 1658.
|
23 |
PAN P, ZHU L, YU T, et al. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: a meta-analysis of resting-state fMRI studies[J]. Ageing Research Reviews, 2017, 35: 12- 21.
|
24 |
GAO Y, NIE K, HUANG B, et al. Changes of brain structure in Parkinson's disease patients with mild cognitive impairment analyzed via VBM technology[J]. Neuroscience Letters, 2017, 658: 121- 132.
|
25 |
BAILLY M, DESTRIEUX C, HOMMET C, et al. Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer's disease and mild cognitive impairment: MRI and 18F‑FDG PET quantitative analysis using FreeSurfer[J]. BioMed Research International, 2015, 2015: No. 583931.
|