[1] PETERSEN R C, DOODY R, KURZ A, et al. Current concepts in mild cognitive impairment[J]. Archives of Neurology, 2001, 58(12):1985-1992. [2] PETERSEN R C, NEGASH S. Mild cognitive impairment:an overview[J]. CNS Spectrums, 2008, 13(1):45-53. [3] 于洋,尹昌浩.轻度认知障碍患者脑结构与功能网络变化的研究进展[J].中国康复理论与实践,2015,21(6):653-656.(YU Y, YIN C H. Research progress of cerebral structure and functional network change in patients with mild cognitive impairment[J]. Chinese Journal of Rehabilitation Theory and Practice, 2015, 21(6):653-656.) [4] 魏珑,杨澄,王丽嘉,等.轻度认知障碍的全脑网络研究进展:来自图论的证据[J].生物医学工程学杂志,2017,34(1):140-144.(WEI L, YANG C, WANG L J, et al. Research progress of disrupted brain connectivity in mild cognitive impairment:findings from graph theoretical studies of whole brain networks[J]. Journal of Biomedical Engineering, 2017, 34(1):140-144.) [5] 梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络[J].科学通报,2010,55(16):1565-1583.(LIANG X, WANG J H, HE Y. Human connectome:structural and functional brain networks[J]. Chinese Science Bulletin, 2010, 55(16):1565-1583.) [6] DAI Z, HE Y. Disrupted structural and functional brain connectomes in mild cognitive impairment and Alzheimer's disease[J]. Neuroscience Bulletin, 2014, 30(2):217-232. [7] 武政,相洁,梁红,等.基于多模态MRI的AD分类模型[J].太原理工大学学报,2015,46(1):85-88,93.(WU Z, XIANG J, LIANG H, et al. The AD classification model based on multimodality MRI[J]. Journal of Taiyuan University of Technology, 2015, 46(1):85-88, 93.) [8] 崔会芳,周梦妮,王彬,等.基于格兰杰因果分析的MCI脑网络分类研究[J].太原理工大学学报,2018,49(6):853-860.(CUI H F, ZHOU M N, WANG B, et al. Classifications of MCI brain network based on Granger causality analysis[J]. Journal of Taiyuan University of Technology, 2018, 49(6):853-860.) [9] 梁红,相洁.基于MCI患者脑功能网络的分类研究[J].计算机工程与设计,2014,35(4):1390-1394.(LIANG H, XIANG J. Research on classification of brain functional network in MCI[J]. Computer Engineering and Design, 2014, 35(4):1390-1394.) [10] ALAM S, KWON G R. Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM[J]. International Journal of Imaging Systems and Technology, 2017, 27(2):133-143. [11] CUI Z, ZHONG S, XU P, et al. PANDA:a pipeline toolbox for analyzing brain diffusion images[J]. Frontiers in Human Neuroscience, 2013, 7:Article No. 42. [12] YAN C, ZANG, Y. DPARSF:a MATLAB toolbox for "Pipeline" data analysis of resting-state fMRI[J]. Frontiers in Systems Neuroscience, 2010, 4:Article No. 13. [13] TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15(1):273-289. [14] LI K, LIU L, YIN Q, et al. Abnormal rich club organization and impaired correlation between structural and functional connectivity in migraine sufferers[J]. Brain Imaging and Behaviour, 2017, 11(2):526-540. [15] 王彬,李丹丹,相洁,等.一种基于结构连接和功能连接的融合脑网络构建方法:201710944535.8[P].2018-02-02.(WANG B, LI D D, XIANG J, et al. A fusion brain network construction method based on structural and functional connections:201710944535.8[P]. 2018-02-02.) [16] YAN T, WANG W, YANG L, et al. Rich club disturbances of the human connectome from subjective cognitive decline to Alzheimer's disease[J]. Theranostics, 2018, 8(12):3237-3255. [17] STAM C J. Functional connectivity patterns of human magnetoencephalographic recordings:a ‘small-world’ network?[J]. Neuroscience Letters, 2004, 355(1/2):25-28. [18] SPORNS O, ZWI J D. The small world of the cerebral cortex[J]. Neuroinformatics, 2004, 2(2):145-162. [19] XIE S, RONG G, LI N, et al. Brain fMRI processing and classification based on combination of PCA and SVM[C]//Proceedings of the 2009 International Joint Conference on Neural Networks. Piscataway:IEEE, 2009:3384-3389. [20] SHARMA K, KAUR A, GUJRAL S. A review on various brain tumor detection techniques in brain MRI images[J]. IOSR Journal of Engineering, 2014, 4(5):6-12. [21] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. [22] ZHANG X, HU B, MA X, et al. Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression[J]. IEEE Transactions on NanoBioscience, 2015, 14(2):237-247. [23] ZHAO Z, FAN F, LU J, et al. Changes of gray matter volume and amplitude of low-frequency oscillations in amnestic MCI:an integrative multi-modal MRI study[J]. Acta Radiologica, 2015, 56(5):614-621. [24] 接标,张道强.面向脑网络的新型图核及其在MCI分类上的应用[J].计算机学报,2016,39(8):1667-1680.(JIE B, ZHANG D Q. The novel graph kernel for brain networks with application to MCI classification[J]. Chinese Journal of Computers, 2016, 39(8):1667-1680.) [25] CHEN X, ZHANG H, ZHANG L, et al. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification[J]. Human Brain Mapping, 2017, 38(10):5019-5034. [26] WANG J, ZUO X, DAI Z, et al. Disrupted functional brain connectome in individuals at risk for Alzheimer's disease[J]. Biological Psychiatry, 2013, 73(5):472-481. [27] 王湘彬,赵小虎,江虹,等.轻度认知功能障碍患者大脑fMRI网络小世界特性[J].中国医学影像技术,2014,30(5):790-793.(WANG X B, ZHAO X H, JIANG H, et al. Small-worldness of brain fMRI network in patients with mild cognitive impairment[J]. Chinese Journal of Medical Imaging Technology, 2014, 30(5):790-793.) [28] WANG J, KHOSROWABADI R, NG K K, et al. Alternations in brain network topology and structural-functional connectome coupling relate to cognitive impairment[J]. Frontiers in Aging Neuroscience, 2018, 10:Article No. 404. |