| 1 | 徐月梅,胡玲,赵佳艺,等. 大语言模型的技术应用前景与风险挑战[J]. 计算机应用, 2024, 44(6):1655-1662. | 
																													
																						|  | XU Y M, HU L, ZHAO J Y, et al. Technology application prospects and risk challenges of large language models [J]. Journal of Computer Applications, 2024, 44(6):1655-1662. | 
																													
																						| 2 | LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 9459-9474. | 
																													
																						| 3 | WANG W, WANG Y, JOTY S, et al. RAP-Gen: retrieval-augmented patch generation with CodeT5 for automatic program repair[C]// Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2023: 146-158. | 
																													
																						| 4 | MA X, GONG Y, HE P, et al. Query rewriting for retrieval-augmented large language models [C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 5303-5315. | 
																													
																						| 5 | OpenAI. GPT-4 technical report[R/OL]. [2024-06-01]. . | 
																													
																						| 6 | Team Qwen, Group Alibaba. Qwen technical report [R/OL]. [2024-06-03]. . | 
																													
																						| 7 | ROBERTSON S E, WALKER S. On relevance weights with little relevance information [C]// Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1997: 16-24. | 
																													
																						| 8 | ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework: BM25 and beyond [J]. Foundations and Trends in Information Retrieval, 2009, 3(4): 333-389. | 
																													
																						| 9 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
																													
																						| 10 | KARPUKHIN V, OGUZ B, MIN S, et al. Dense passage retrieval for open-domain question answering [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6769-6781. | 
																													
																						| 11 | WANG S, ZHUANG S, ZUCCON G. BERT-based dense retrievers require interpolation with BM25 for effective passage retrieval [C]// Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval. New York: ACM, 2021: 317-324. | 
																													
																						| 12 | CORMACK G V, CLARKE C L A, BUETTCHER S. Reciprocal rank fusion outperforms Condorcet and individual rank learning methods [C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009: 758-759. | 
																													
																						| 13 | XU F, SHI W, CHOI E. RECOMP: improving retrieval-augmented LMs with compression and selective augmentation [EB/OL]. [2024-07-01]. . | 
																													
																						| 14 | LI Z, ZHANG X, ZHANG Y, et al. Towards general text embeddings with multi-stage contrastive learning [EB/OL]. [2024-06-06]. . | 
																													
																						| 15 | JOHNSON J, DOUZE M, JÉGOU H. Billion-scale similarity search with GPUs [J]. IEEE Transactions on Big Data, 2021, 7(3): 535-547. | 
																													
																						| 16 | XIAO S, LIU Z, ZHANG P, et al. C-Pack: packaged resources to advance general Chinese embedding [C]// Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 641-649. | 
																													
																						| 17 | CONNEAU A, KHANDELWAL K, GOYAL N, et al. Unsupervised cross-lingual representation learning at scale [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 8440-8451. | 
																													
																						| 18 | PENG W, LI G, JIANG Y, et al. Large language model based long-tail query rewriting in Taobao search [C]// Companion Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 20-28. | 
																													
																						| 19 | SUN Y, WANG S, FENG S, et al. Ernie 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2024-08-01]. . | 
																													
																						| 20 | LONG D, GAO Q, ZOU K, et al. Multi-CPR a multi domain Chinese dataset for passage retrieval [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 3046-3056. | 
																													
																						| 21 | LIN C Y. ROUGE: a package for automatic evaluation of summaries [C]// Proceedings of the ACL-04 Workshop: Text Summarization Branches Out. Stroudsburg: ACL, 2004: 74-81. |