| [1] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. | 
																													
																						| [2] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. | 
																													
																						| [3] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. | 
																													
																						| [4] | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. | 
																													
																						| [5] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. | 
																													
																						| [6] | ROSENBERG C, HEBERT M, SCHNEIDERMAN H. Semi-supervised self-training of object detection models[C]// Proceedings of the 7th IEEE Workshops on Applications of Computer Vision - Volume 1. Piscataway: IEEE, 2005: 29-36. | 
																													
																						| [7] | ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. | 
																													
																						| [8] | SOHN K, ZHANG Z, LI C L, et al. A simple semi-supervised learning framework for object detection[EB/OL]. [2024-06-11].. | 
																													
																						| [9] | ZHANG L, SUN Y, WEI W. Mind the gap: polishing pseudo labels for accurate semi-supervised object detection[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 3463-3471. | 
																													
																						| [10] | LIU Y C, MA C M, HE Z, et al. Unbiased teacher for semi-supervised object detection[EB/OL]. [2024-06-11].. | 
																													
																						| [11] | XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3040-3049. | 
																													
																						| [12] | CHEN B, CHEN W, YANG S, et al. Label matching semi-supervised object detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14361-14370. | 
																													
																						| [13] | LIU Y C, MA C Y, KIRA Z. Unbiased Teacher v2: semi-supervised object detection for anchor-free and anchor-based detectors[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9809-9818. | 
																													
																						| [14] | LIU L, ZHANG B, ZHANG J, et al. MixTeacher: mining promising labels with mixed scale teacher for semi-supervised object detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7370-7379. | 
																													
																						| [15] | 张英俊,李牛牛,谢斌红,等. 课程学习指导下的半监督目标检测框架[J]. 计算机应用, 2024, 44(8): 2326-2333. | 
																													
																						|  | ZHANG Y J, LI N N, XIE B H, et al. Semi-supervised object detection framework guided by curriculum learning[J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. | 
																													
																						| [16] | 李牛牛. 基于课程学习的半监督目标检测算法研究[D]. 太原:太原科技大学, 2024. | 
																													
																						|  | LI N N. Research on semi supervised object detection algorithm based on curriculum learning[D]. Taiyuan: Taiyuan University of Science and Technology, 2024. | 
																													
																						| [17] | BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]// Proceedings of the 26th International Conference on Machine Learning. New York: ACM, 2009: 41-48. | 
																													
																						| [18] | JIANG L, MENG D, ZHAO Q, et al. Self-paced curriculum learning[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2694-2700. | 
																													
																						| [19] | JEONG J, LEE S, KIM J, et al. Consistency-based semi-supervised learning for object detection[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 10759-10768. | 
																													
																						| [20] | 祝彪,李艳,王硕. 基于一致性正则化的深度偏标记半监督学习方法[J]. 西南大学学报(自然科学版), 2024, 46(5):27-39. | 
																													
																						|  | ZHU B, LI Y, WANG S. Deep partial labeled semi-supervised learning method based on consistency regularization[J]. Journal of Southwest University (Natural Science Edition), 2024, 46(5):27-39. | 
																													
																						| [21] | CHEN D, SUN D, FU J, et al. Semi-supervised learning framework for aluminum alloy metallographic image segmentation[J]. IEEE Access, 2021, 9: 30858-30867. | 
																													
																						| [22] | WANG P, PENG J, PEDERSOLI M, et al. Self-paced and self-consistent co-training for semi-supervised image segmentation[J]. Medical Image Analysis, 2021, 73: No.102146. | 
																													
																						| [23] | 李豪,赵悦,公茂果,等. 一种自适应混合权重的自步学习方法[J]. 软件学报, 2023, 34(5):2337-2349. | 
																													
																						|  | LI H, ZHAO Y, GONG M G, et al. Self-paced learning method with adaptive mixed weights[J]. Journal of Software, 2023, 34(5):2337-2349. | 
																													
																						| [24] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. | 
																													
																						| [25] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
																													
																						| [26] | DeVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[EB/OL]. [2024-06-11].. |