1 |
BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 1877-1901.
|
2 |
CHOWDHERY A, NARANG S, DEVLIN J, et al. PaLM: scaling language modeling with pathways[J]. Journal of Machine Learning Research, 2023, 24: 1-113.
|
3 |
WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 24824-24837.
|
4 |
KOJIMA T, GU S S, REID M, et al. Large language models are zero-shot reasoners[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 22199-22213.
|
5 |
WANG X, WEI J, SCHUURMANS D, et al. Self-consistency improves chain of thought reasoning in language models[EB/OL]. [2024-01-11]..
|
6 |
WANG J, LI J, ZHAO H. Self-prompted chain-of-thought on large language models for open-domain multi-hop reasoning[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 2717-2731.
|
7 |
WEI J, TAY Y, BOMMASANI R, et al. Emergent abilities of large language models[EB/OL].[2024-03-27]. .
|
8 |
COBBE K, KOSARAJU V, BAVARIAN M, et al. Training verifiers to solve math word problems[EB/OL]. [2024-03-05]. .
|
9 |
LING W, YOGATAMA D, DYER C, et al. Program induction by rationale generation: learning to solve and explain algebraic word problems[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 158-167.
|
10 |
PATEL A, BHATTAMISHRA S, GOYAL N. Are NLP models really able to solve simple math word problems?[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 2080-2094.
|
11 |
TRIVEDI H, BALASUBRAMANIAN N, KHOT T, et al. MuSiQue: multi-hop questions via single-hop question composition[J]. Transactions of the Association for Computational Linguistics, 2022, 10: 539-554.
|
12 |
YANG Z, QI P, ZHANG S, et al. HotpotQA: a dataset for diverse, explainable multi-hop question answering[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2369-2380.
|
13 |
HO X, DUONG NGUYEN A K, SUGAWARA S, et al. Constructing a multi-hop QA dataset for comprehensive evaluation of reasoning steps[C]// Proceedings of the 28th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2020: 6609-6625.
|
14 |
大岛祥誉. 麦肯锡思考工具[M]. 朱悦玮,译. 北京:北京时代华文书局, 2023:154-157.
|
15 |
CHAKMA K, DAS A, DEBBARMA S. Deep semantic role labeling for tweets using 5W1H: Who, What, When, Where, Why and How[J]. Computación y Sistemas, 2019, 23(3): 751-763.
|
16 |
姜天笑.浅谈科技查新工作中的5W1H分析法[J].情报探索,2011(5):96-97.
|
17 |
CHAKMA K, DAS A. A 5W1H based annotation scheme for semantic role labeling of English tweets [J]. Computación y Sistemas, 2018, 22(3): 747-755.
|
18 |
DAS A, BANDYAOPADHYAY S, GAMBÄCK B. The 5W structure for sentiment summarization-visualization-tracking[C]// Proceedings of the 2012 International Conference on Computational Linguistics and Intelligent Text Processing, LNCS 7181. Berlin: Springer, 2012: 540-555.
|
19 |
PARTON K, McKEOWN K R, COYNE R, et al . Who, what, when, where, why? comparing multiple approaches to the cross-lingual 5W task[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Stroudsburg: ACL, 2009: 423-431.
|
20 |
VASWANI A, SHAZEER NRMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
21 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
22 |
LIU P, YUAN W, FU J, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): No.195.
|
23 |
RAE J W, BORGEAUD S, CAI T, et al. Scaling language models: methods, analysis & insights from training Gopher[EB/OL]. [2024-02-21]. .
|
24 |
ZELIKMAN E, WU Y, MU J, et al. STaR: self-taught reasoner bootstrapping reasoning with reasoning[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 15476-15488.
|
25 |
PRESS O, ZHANG M, MIN S, et al. Measuring and narrowing the compositionality gap in language models[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 5687-5711.
|
26 |
ZHANG Z, ZHANG A, LI M, et al. Automatic chain of thought prompting in large language models[EB/OL]. [2024-01-06]. .
|
27 |
AGRAWAL S, ZHOU C, LEWIS M, et al. In-context examples selection for machine translation[C]// Proceedings of the Findings of Association for Computational Linguistics: ACL 2023. Stroudsburg: ACL, 2023: 8857-8873.
|
28 |
YE J, WU Z, FENG J, et al. Compositional exemplars for in-context learning[C]// Proceedings of the 40th International Conference on Machine Learning. New York: JMLR.org, 2023: 39818-39833.
|
29 |
REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3982-3992.
|
30 |
ZHOU D, SCHÄRLI N, HOU L, et al. Least-to-most prompting enables complex reasoning in large language models[EB/OL]. [2024-03-28]. .
|
31 |
BAI J, BAI S, CHU Y, et al. QWEN technical report[EB/OL]. [2024-02-28]. .
|