[1] |
中国互联网络信息中心. 第53 次中国互联网络发展状况统计报告[R/OL]. [2024-06-11]. .
|
|
China Internet Network Information Center. The 53rd statistical report on China’s Internet development[R/OL]. [2024-06-11]. .
|
[2] |
CHEN X, LAN X, WAN J, et al. Evolutionary prediction of nonstationary event popularity dynamics of Weibo social network using time-series characteristics[J]. Discrete Dynamics in Nature and Society, 2021, 2021: No.5551718.
|
[3] |
NIA Z M, KHAYYAMBASHI M R. Improving content popularity prediction with k-means clustering and deep-belief networks[J]. Multimedia Tools and Applications, 2021, 80(10): 15745-15764.
|
[4] |
韩玮,陈安. 基于焦耳定律的公共危机事件网络舆情热度模型研究[J]. 情报科学, 2021, 39(2): 24-33.
|
|
HAN W, CHEN A. The Internet public opinion hot-degree model of public crisis events based on Joule’s law[J]. Information Science, 2021, 39(2): 24-33.
|
[5] |
LYMPEROPOULOS I N. RC-Tweet: modeling and predicting the popularity of tweets through the dynamics of a capacitor[J]. Expert Systems with Applications, 2021, 163: No.113785.
|
[6] |
刘经纬,张淑琪. 基于情感分析的微博热点话题演化分析[J]. 信息系统工程, 2022(12):137-140.
|
|
LIU J W, ZHANG S Q. Analysis of the evolution of Weibo hot topics based on sentiment analysis[J]. Information Systems Engineering, 2022(12): 137-140.
|
[7] |
黄微,刘熠,许烨婧,等. 网络舆情推文的热度测度模型构建[J]. 图书情报工作, 2019, 63(20):17-25.
|
|
HUANG W, LIU Y, XU Y J, et al. The construction of heat assessment model for tweets of network public opinion[J]. Library and Information Service, 2019, 63(20): 17-25.
|
[8] |
杜慧,郭岩,范意兴,等. 基于因果模型的主题热度计算与预测方法[J]. 中文信息学报, 2016, 30(2): 50-55.
|
|
DU H, GUO Y, FAN Y X, et al. Calculation and prediction methods of topic hot-degree based on causal models[J]. Journal of Chinese Information Processing, 2016, 30(2): 50-55.
|
[9] |
郑作武,邵斯绮,高晓沨,等. 基于社交圈层和注意力机制的信息热度预测[J]. 计算机学报, 2021, 44(5): 921-936.
|
|
ZHENG Z W, SHAO S Q, GAO X F, et al. Social circle and attention based information popularity prediction[J]. Chinese Journal of Computers, 2021, 44(5): 921-936.
|
[10] |
ZHANG C. Analysis of Weibo user characteristics and emotional tendency in COVID-19 scenario based on K-means clustering algorithm[C]// Proceedings of the 6th Annual International Conference on Data Science and Business Analytics. Piscataway: IEEE, 2022: 29-32.
|
[11] |
张梦瑶,朱广丽,张顺香,等. 基于情感分析的微博热点话题用户群体划分模型[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
|
|
ZHANG M Y, ZHU G L, ZHANG S X, et al. Grouping microblog users of trending topics based on sentiment analysis[J]. Data Analysis and Knowledge Discovery, 2021, 5(2): 43-49.
|
[12] |
王惠茹. 基于二维分析框架的新浪微博舆情热度预测模型[D]. 北京:中国石油大学(北京), 2023.
|
|
WANG H R. Prediction model of Sina Weibo public opinion heat based on two-dimensional analysis framework[D]. Beijing: China University of Petroleum, Beijing, 2023.
|
[13] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
[14] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
[15] |
YIN W, HAY J, ROTH D. Benchmarking zero-shot text classification: datasets, evaluation and entailment approach[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3914-3923.
|
[16] |
WANG W, ZHENG V W, YU H, et al. A survey of zero-shot learning: settings, methods, and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.13.
|
[17] |
CHEN L, CHEN J. Global social network warfare on public opinion[C]// Proceedings of the 20th European Conference on Cyber Warfare and Security. Sonning Common: Academic Conferences and Publishing International Ltd., 2021: 71-79.
|
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
[19] |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
|
[20] |
CERQUEIRA V, TORGO L, SMAILOVIĆ J, et al. A comparative study of performance estimation methods for time series forecasting[C]// Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics. Piscataway: IEEE, 2017: 529-538.
|