[1] |
绿盟科技,天翼安全科技有限公司. 2023年DDoS攻击威胁报告[R/OL]. [2024-06-06]..
|
|
NSFOCUS, China Telecom Cybersecurity Tech. 2023 DDoS attack threat report[R/OL]. [2024-06-06]..
|
[2] |
魏玉人,徐育军. DDoS攻击及防御技术综述[J]. 软件导刊, 2017, 16(3):173-175.
|
|
WEI Y R, XU Y J. Overview of DDoS attacks and defense technologies[J]. Software Guide, 2017, 16(3): 173-175.
|
[3] |
天翼安全科技有限公司,联通数科安全,中国移动卓望公司,等. 2023年全球DDoS攻击现状与趋势分析[R/OL]. [2025-01-06]..
|
|
China Telecom Cybersecurity Tech, Unicom Digital Tech Security, China Mobile Aspire, et al. Analysis of the global DDoS attack status and trends in 2023[R/OL]. [2025-01-06]..
|
[4] |
NOORIBAKHSH M, MOLLAMOTALEBI M. A review on statistical approaches for anomaly detection in DDoS attacks[J]. Information Security Journal: A Global Perspective, 2020, 29(3): 118-133.
|
[5] |
FORTUNATI S, GINI F, GRECO M S, et al. An improvement of the state-of-the-art covariance-based methods for statistical anomaly detection algorithms[J]. Image and Video Processing, 2016, 10(4): 687-694.
|
[6] |
HOQUE N, KASHYAP H, BHATTACHARYYA D K. Real-time DDoS attack detection using FPGA[J]. Computer Communications, 2017, 110: 48-58.
|
[7] |
BISTA S, CHITRAKAR R. DDoS attack detection using heuristics clustering algorithm and Naïve Bayes classification[J]. Journal of Information Security, 2017, 9: 33-44.
|
[8] |
MAKKAWI A M, YOUSIF A. Machine learning for cloud DDoS attack detection: a systematic review[C]// Proceedings of the 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering. Piscataway: IEEE, 2021: 1-9.
|
[9] |
NAIEM S, KHEDR A E, IDREES A M, et al. Enhancing the efficiency of Gaussian Naïve Bayes machine learning classifier in the detection of DDOS in cloud computing[J]. IEEE Access, 2023, 11: 124597-124608.
|
[10] |
MAAZALAHI M, HOSSEINI S. K-means and meta-heuristic algorithms for intrusion detection systems[J]. Cluster Computing, 2024, 27(8): 10377-10419.
|
[11] |
SANMORINO A, GUSTRIANSYAH R, ALIE J. DDoS attacks detection method using feature importance and support vector machine[J]. JUITA: Jurnal Informatika, 2022, 10(2): 167-171.
|
[12] |
KAMALDEEP, MALIK M, DUTTA M. Feature engineering and machine learning framework for DDoS attack detection in the standardized internet of things[J]. IEEE Internet of Things Journal, 2023, 10(10): 8658-8669.
|
[13] |
HAI T, ZHOU J, ADETILOYE O A, et al. DDoS attack prediction using decision tree and random forest algorithms[C]// Proceedings of the 2023 International Conference on Advances in Communication Technology and Computer Engineering, LNNS 735. Cham: Springer, 2023: 37-46.
|
[14] |
徐精诚,陈学斌,董燕灵,等. 融合特征选择的随机森林DDoS攻击检测[J]. 计算机应用, 2023, 43(11):3497-3503.
|
|
XU J C, CHEN X B, DONG Y L, et al. DDoS attack detection by random forest fused with feature selection[J]. Journal of Computer Applications, 2023, 43(11): 3497-3503.
|
[15] |
MITTAL M, KUMAR K, BEHAL S. Deep learning approaches for detecting DDoS attacks: a systematic review[J]. Soft Computing, 2023, 27(18): 13039-13075.
|
[16] |
KUMAR P, KUSHAWAHA C, YADAV D K, et al. Exploring the potential of artificial intelligence model to detect distributed denial of service attacks[C]// Proceedings of the 1st International Conference on Artificial Intelligence, Communication, IoT, Data Engineering and Security. [S.l.]: European Alliance for Innovation (EAI), 2024: 1-9.
|
[17] |
SETITRA M A, FAN M, AGBLEY B L Y, et al. Optimized MLP-CNN model to enhance detecting DDoS attacks in SDN environment[J]. Network, 2023, 3(4): 538-562.
|
[18] |
BALA B, BEHAL S. AI techniques for IoT-based DDoS attack detection: taxonomies, comprehensive review and research challenges[J]. Computer Science Review, 2024, 52: No.100631.
|
[19] |
SALEHI M, YARI A. Detecting DOS attacks using a hybrid CNN-LSTM model[C]// Proceedings of the 10th International Conference on Web Research. Piscataway: IEEE, 2024: 397-401.
|
[20] |
DIABA S Y, ELMUSRATI M. Proposed algorithm for smart grid DDoS detection based on deep learning[J]. Neural Networks, 2023, 159: 175-184.
|
[21] |
陈虹,齐兵,金海波,等. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 计算机应用, 2024, 44(8):2493-2499.
|
|
CHEN H, QI B, JIN H B, et al. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU[J]. Journal of Computer Applications, 2024, 44(8):2493-2499.
|
[22] |
LYU Y, FENG Y, SAKURAI K. A survey on feature selection techniques based on filtering methods for cyber attack detection[J]. Information, 2023, 14(3): No.191.
|
[23] |
GAVEL S, RAGHUVANSHI A S, TIWARI S. Maximum correlation based mutual information scheme for intrusion detection in the data networks[J]. Expert Systems with Applications, 2022, 189: No.116089.
|
[24] |
DENG W Q, CRAIU R V, SUN L. Measuring the severity of multi-collinearity in high dimensions[EB/OL]. [2024-06-10]..
|
[25] |
ROY S, LI J, CHOI B J, et al. A lightweight supervised intrusion detection mechanism for IoT networks[J]. Future Generation Computer Systems, 2022, 127: 276-285.
|
[26] |
施启军,潘峰,龙福海,等. 特征选择方法研究综述[J]. 微电子学与计算机, 2022, 39(3):1-8.
|
|
SHI Q J, PAN F, LONG F H, et al. A review of feature selection methods[J]. Microelectronics and Computer, 2022, 39(3):1-8.
|
[27] |
WIGHNESWARA A A, SJAHRUNNISA A, ROMADHONA Y, et al. Network behavior anomaly detection using decision tree[C]// Proceedings of the IEEE 12th International Conference on Communication Systems and Network Technologies. Piscataway: IEEE, 2023: 705-709.
|
[28] |
ALDUAILIJ M, KHAN Q W, TAHIR M, et al. Machine-learning-based DDoS attack detection using mutual information and random forest feature importance method[J]. Symmetry, 2022, 14(6): No.1095.
|
[29] |
PRAMILARANI K, KUMARI P V. Cost based random forest classifier for intrusion detection system in internet of things[J]. Applied Soft Computing, 2024, 151: No.111125.
|
[30] |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2024-06-10]..
|
[31] |
LEI T, ZHANG Y, WANG S I, et al. Simple recurrent units for highly parallelizable recurrence[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 4470-4481.
|
[32] |
SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]// Proceedings of the 4th International Conference on Information Systems Security and Privacy. Setúbal: SciTePress, 2018: 108-116.
|
[33] |
SHARAFALDIN I, LASHKARI A H, HAKAK S, et al. Developing realistic Distributed Denial of Service (DDoS)attack dataset and taxonomy[C]// Proceedings of the 2019 International Carnahan Conference on Security Technology. Piscataway: IEEE, 2019: 1-8.
|
[34] |
KUMAAR M A, SAMIAYYA D, VINCENT P M D R, et al. A hybrid framework for intrusion detection in healthcare systems using deep learning[J]. Frontiers in Public Health, 2022, 9: No.824898.
|
[35] |
王相月,赵利辉. 基于多阶段特征选择和CNN-GRU的网络入侵检测模型[J]. 中北大学学报(自然科学版), 2024, 45(1):66-73.
|
|
WANG X Y, ZHAO L H. Network intrusion detection model based on multi-stage feature selection and CNN-GRU[J]. Journal of North University of China (Natural Science Edition), 2024, 45(1):66-73.
|
[36] |
GOPIKA P, KRISHNENDU C S, CHANDANA M H, et al. Single-layer convolution neural network for cardiac disease classification using electrocardiogram signals[M]// DAS H, PRADHAN C, DEY N. Deep learning for data analytics: foundations, biomedical applications, and challenges. New York: Academic Press, 2020: 21-35.
|
[37] |
SUBRMANIAN M, SHANMUGAVADIVEL K, NANDHINI P S, et al. Evaluating the performance of LSTM and GRU in detection of distributed denial of service attacks using CICDDoS2019 dataset[C]// Proceedings of the 2022 International Conference on Harmony Search, Soft Computing and Applications, LNDECT 140. Singapore: Springer, 2022: 395-406.
|
[38] |
HNAMTE V, HUSSAIN J. DCNNBiLSTM: an efficient hybrid deep learning-based intrusion detection system[J]. Telematics and Informatics Reports, 2023, 10: No.100053.
|
[39] |
BALASUBRAMANIAM S, JOE C V, SIVAKUMAR T A, et al. Optimization enabled deep learning-based DDoS attack detection in cloud computing[J]. International Journal of Intelligent Systems, 2023, 2023: No.2039217.
|