《计算机应用》唯一官方网站

• •    下一篇

基于混合特征选择的低延时DDoS攻击检测

谢丽霞1,王嘉敏1,杨宏宇1,2*,胡泽2,成翔3,4   

  1. (1. 中国民航大学 计算机科学与技术学院,天津,300300;
    2. 中国民航大学 安全科学与工程学院,天津,300300;3. 扬州大学 信息工程学院,江苏 扬州,225127;
    4.中国民航大学 民航信息安全评估中心,天津,300300)


  • 收稿日期:2024-10-14 修回日期:2025-01-18 接受日期:2025-01-22 发布日期:2025-02-07 出版日期:2025-02-07
  • 通讯作者: 杨宏宇
  • 基金资助:
    国家自然科学基金资助项目;国家自然科学基金资助项目;江苏省基础研究计划自然科学基金青年基金项目

Low-latency DDoS attack detection based on hybrid feature selection

  • Received:2024-10-14 Revised:2025-01-18 Accepted:2025-01-22 Online:2025-02-07 Published:2025-02-07
  • Contact: YANG Hong-yu
  • Supported by:
    The National Natural Science Foundation of China;The National Natural Science Foundation of China;the Jiangsu Provincial Basic Research Program Natural Science Foundation - Youth Fund Project

摘要: 许多分布式拒绝服务(DDoS)攻击检测方法侧重提升模型性能,但忽略流量样本分布和特征维度对检测性能的影响,导致模型学习多余信息。针对网络流量类不平衡和特征冗余问题,提出一种基于多评价标准的混合特征选择方法(Hybrid Feature Selection method based on Multiple Evaluation Criteria, HFS-MEC)。首先,综合考虑皮尔逊相关系数(PCC)和互信息(MI),选出相关性特征;其次,设计基于方差膨胀因子(VIF)的序列后向搜索(SBS)算法,减少特征冗余,进一步降低特征维度。同时,为平衡检测性能和计算时间,设计基于简单循环单元(SRU)的低延时DDoS攻击检测(Low-latency DDoS attack detection based on SRU, L-DDoS-SRU)模型。在CIC-IDS2017和CIC-DDoS2019数据集上的实验结果表明,HFS-MEC在CIC-IDS2017和CIC-DDoS2019数据集上将特征维度从78维和88维分别减少至31维和41维。L-DDoS-SRU检测时间仅40.34秒,召回率达99.38%,与长短期记忆(LSTM)相比提高了8.47%,与门控循环单元(GRU)相比提高了9.76%。所提方法有效提高检测性能并减少检测时间。

关键词: 类不平衡, 特征冗余, 混合特征选择, 低延时, 分布式拒绝服务攻击检测, 简单循环单元

Abstract: Many Distributed Denial of Service (DDoS) attack detection methods focus on improving model performance, but ignore the impact of traffic sample distribution and feature dimensions on detection performance, resulting in the model learning redundant information. To address the problems of network traffic class imbalance and feature redundancy, a Hybrid Feature Selection method based on Multiple Evaluation Criteria (HFS-MEC) was proposed. Firstly, the Pearson Correlation Coefficient (PCC) and Mutual Information (MI) were considered comprehensively to select the correlation features; then, the Sequential Backward Selection (SBS) algorithm based on Variance Inflation Factor (VIF) was designed to reduce the feature redundancy and further reduce the feature dimension. At the same time, to balance the detection performance and computation time, a Low-latency DDoS Attack Detection based on Simple Recurrent Unit (L-DDoS-SRU) model was designed. The experimental results show that HFS-MEC reduces the feature dimensions from 78 and 88 dimensions to 31 and 41 dimensions on the CIC-IDS2017 and CIC-DDoS2019 datasets, respectively. The L-DDoS-SRU detection time is only 40.34 seconds with a recall of 99.38%, which is a 8.47% improvement compared to Long Short-Term Memory (LSTM), and an increase compared to Gated Recurrent Unit (GRU) of 9.76%. The proposed method effectively improves the detection performance and reduces the detection time.

Key words: class imbalance, feature redundancy, hybrid feature selection, low-latency, Distributed Denial of Service (DDoS) attack detection, Simple Recurrent Unit (SRU)

中图分类号: