《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (10): 3067-3073.DOI: 10.11772/j.issn.1001-9081.2024101535
• 人工智能 •
Guoyu XU, Xiaolong YAN(), Yidan ZHANG
摘要:
近年来,生成对抗网络(GAN)被广泛应用于数据增强,能有效缓解训练样本不足的问题,对模型训练具有重要研究意义。然而,现有用于数据增强的GAN模型存在对数据集要求高和模型收敛不稳定等问题,导致生成的图像易出现失真和形变。因此,提出一种基于动态上采样的轻量级GAN——DU-FastGAN(Dynamic-Upsample-FastGAN)进行数据增强。首先,通过动态上采样模块构建生成器,使生成器能够根据当前特征图的大小采用不同粒度的上采样方法,从而重建纹理,提高合成的整体结构和局部细节的质量;其次,为了使模型能够更好地获取图像的全局信息流,提出权重信息跳跃连接模块,以减小卷积及池化操作对特征的扰动,提高模型对不同特征的学习能力,使得模型生成图像的细节更逼真;最后,给出特征丢失损失函数,通过计算采样过程中对应特征图之间的相对距离提高模型生成质量。实验结果表明,相较于FastGAN、MixDL(Mixup-based Distance Learning)和RCL-master(Reverse Contrastive Learning-master)等方法,DU-FastGAN在10个小数据集上的FID(Fréchet Inception Distance)的最大降幅达到23.47%,能够有效缓解生成图像的失真和形变问题,并提高了生成图像的质量;同时,DU-FastGAN的模型训练时间在600 min内,实现了轻量级开销。
中图分类号: