《计算机应用》唯一官方网站 ›› 2026, Vol. 46 ›› Issue (1): 152-160.DOI: 10.11772/j.issn.1001-9081.2025010043
收稿日期:2025-01-13
修回日期:2025-03-16
接受日期:2025-03-17
发布日期:2026-01-10
出版日期:2026-01-10
通讯作者:
李珊珊
作者简介:李萌萌(2002—),女,陕西渭南人,硕士研究生,CCF会员,主要研究方向:图像加密、图像处理基金资助:
Mengmeng LI, Jiaxin HUANG, Jiawen LI, Shanshan LI(
)
Received:2025-01-13
Revised:2025-03-16
Accepted:2025-03-17
Online:2026-01-10
Published:2026-01-10
Contact:
Shanshan LI
About author:LI Mengmeng, born in 2002, M. S. candidate. Her research interests include image encryption, image processing.Supported by:摘要:
针对现有混沌系统参数范围小以及加密算法扩散效果不佳的问题,提出一种新型级联混沌系统和滤波扩散模型,并实现一种不限图像尺寸的彩色图像加密算法。首先,设计一种新的二维级联Henon映射、Sine映射和Iterative映射的混沌系统(2D-SIHC),同时加入线性函数扩展参数范围。在该系统迭代生成的二维序列中,一维用于置乱像素位置,另一维用于更新滤波模板和扩散操作。其次,为避免密钥重复使用导致算法安全性降低的问题,使用SHA-512算法结合明文图像,通过标志位与权重的计算生成密钥。再次,为了增强算法的扩散效果,设计二维滤波扩散模型,不同于传统滤波扩散通过固定模板遍历改变图像像素值,新扩散模型引入混沌序列以不断更新滤波模板值,从而动态改变图像像素值,最后完成加密。实验结果表明,以Airplane图像为例,所提算法的像素变化率(NPCR)和统一平均变化强度(UACI)可以分别达到99.605 9%和33.397 1%,非常接近理想值;此外,所提算法能抵抗强度为0.2的噪声干扰和缺失50%的裁剪攻击,且加密效率高。
中图分类号:
李萌萌, 黄佳鑫, 李佳文, 李珊珊. 基于级联混沌系统和滤波扩散的图像加密算法[J]. 计算机应用, 2026, 46(1): 152-160.
Mengmeng LI, Jiaxin HUANG, Jiawen LI, Shanshan LI. Image encryption algorithm based on cascaded chaotic system and filter diffusion[J]. Journal of Computer Applications, 2026, 46(1): 152-160.
| 碱基 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
|---|---|---|---|---|---|---|---|---|
| A | 11 | 00 | 00 | 01 | 01 | 10 | 10 | 11 |
| C | 10 | 01 | 10 | 00 | 11 | 00 | 11 | 01 |
| G | 01 | 10 | 01 | 11 | 00 | 11 | 00 | 10 |
| T | 00 | 11 | 11 | 10 | 10 | 01 | 01 | 00 |
表1 DNA编码规则
Tab. 1 DNA coding rules
| 碱基 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
|---|---|---|---|---|---|---|---|---|
| A | 11 | 00 | 00 | 01 | 01 | 10 | 10 | 11 |
| C | 10 | 01 | 10 | 00 | 11 | 00 | 11 | 01 |
| G | 01 | 10 | 01 | 11 | 00 | 11 | 00 | 10 |
| T | 00 | 11 | 11 | 10 | 10 | 01 | 01 | 00 |
| 算法 | 图像 | 方向 | 明文图像 | 密文图像 | ||||
|---|---|---|---|---|---|---|---|---|
| R | G | B | R | G | B | |||
| 本文算法 | Birds | 水平 | 0.989 0 | 0.984 6 | 0.979 5 | -0.001 7 | 0.002 3 | 0.000 8 |
| 垂直 | 0.986 1 | 0.980 1 | 0.973 3 | 0.002 2 | 0.001 9 | 0.001 2 | ||
| 对角线 | 0.986 5 | 0.984 0 | 0.977 1 | -0.000 6 | 0.001 3 | 0.003 1 | ||
| Peppers | 水平 | 0.935 0 | 0.939 4 | 0.898 7 | -0.002 9 | 0.001 7 | 0.001 7 | |
| 垂直 | 0.964 2 | 0.970 4 | 0.942 5 | 0.003 3 | 0.001 8 | 0.002 0 | ||
| 对角线 | 0.929 2 | 0.938 1 | 0.891 9 | -0.001 8 | 0.002 5 | 0.002 8 | ||
| Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | -0.000 7 | -0.001 1 | -0.000 8 | |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | -0.000 7 | 0.001 0 | -0.001 0 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | 0.001 3 | -0.002 0 | -0.002 2 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.002 1 | -0.003 5 | 0.002 5 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | 0.005 2 | 0.003 1 | -0.002 6 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | 0.004 6 | 0.004 8 | 0.003 9 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.003 2 | -0.002 1 | 0.006 4 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | -0.004 0 | 0.004 2 | 0.002 3 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | 0.005 4 | 0.009 3 | 0.003 4 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.008 1 | 0.009 3 | 0.003 5 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | -0.007 5 | 0.004 0 | -0.001 8 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | -0.009 0 | 0.013 2 | -0.007 0 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.004 5 | 0.003 6 | -0.004 0 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | 0.003 1 | 0.002 9 | -0.003 9 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | -0.005 4 | 0.004 9 | 0.005 1 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.006 4 | -0.003 1 | 0.002 0 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | 0.002 3 | -0.004 9 | 0.008 4 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | -0.007 0 | 0.003 6 | -0.005 2 | ||
表2 不同算法对测试图像加密前后的相关系数对比
Tab. 2 Comparison of correlation coefficients before and after encryption of test images by different algorithms
| 算法 | 图像 | 方向 | 明文图像 | 密文图像 | ||||
|---|---|---|---|---|---|---|---|---|
| R | G | B | R | G | B | |||
| 本文算法 | Birds | 水平 | 0.989 0 | 0.984 6 | 0.979 5 | -0.001 7 | 0.002 3 | 0.000 8 |
| 垂直 | 0.986 1 | 0.980 1 | 0.973 3 | 0.002 2 | 0.001 9 | 0.001 2 | ||
| 对角线 | 0.986 5 | 0.984 0 | 0.977 1 | -0.000 6 | 0.001 3 | 0.003 1 | ||
| Peppers | 水平 | 0.935 0 | 0.939 4 | 0.898 7 | -0.002 9 | 0.001 7 | 0.001 7 | |
| 垂直 | 0.964 2 | 0.970 4 | 0.942 5 | 0.003 3 | 0.001 8 | 0.002 0 | ||
| 对角线 | 0.929 2 | 0.938 1 | 0.891 9 | -0.001 8 | 0.002 5 | 0.002 8 | ||
| Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | -0.000 7 | -0.001 1 | -0.000 8 | |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | -0.000 7 | 0.001 0 | -0.001 0 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | 0.001 3 | -0.002 0 | -0.002 2 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.002 1 | -0.003 5 | 0.002 5 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | 0.005 2 | 0.003 1 | -0.002 6 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | 0.004 6 | 0.004 8 | 0.003 9 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.003 2 | -0.002 1 | 0.006 4 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | -0.004 0 | 0.004 2 | 0.002 3 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | 0.005 4 | 0.009 3 | 0.003 4 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.008 1 | 0.009 3 | 0.003 5 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | -0.007 5 | 0.004 0 | -0.001 8 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | -0.009 0 | 0.013 2 | -0.007 0 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.004 5 | 0.003 6 | -0.004 0 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | 0.003 1 | 0.002 9 | -0.003 9 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | -0.005 4 | 0.004 9 | 0.005 1 | ||
| 文献[ | Airplane | 水平 | 0.975 4 | 0.987 1 | 0.962 7 | 0.006 4 | -0.003 1 | 0.002 0 |
| 垂直 | 0.975 8 | 0.987 9 | 0.964 1 | 0.002 3 | -0.004 9 | 0.008 4 | ||
| 对角线 | 0.963 1 | 0.973 3 | 0.931 1 | -0.007 0 | 0.003 6 | -0.005 2 | ||
| 算法 | 图像 | NPCR | UACI | ||||
|---|---|---|---|---|---|---|---|
| R | G | B | R | G | B | ||
| 本文算法 | Birds | 99.623 2 | 99.598 8 | 99.619 6 | 33.469 3 | 33.474 5 | 33.482 0 |
| Peppers | 99.661 2 | 99.621 5 | 99.607 8 | 33.421 5 | 33.476 2 | 33.558 1 | |
| Airplane | 99.603 6 | 99.598 7 | 99.615 5 | 33.389 0 | 33.365 3 | 33.437 2 | |
| 文献[ | Airplane | 99.615 8 | 99.587 4 | 99.617 8 | 33.375 1 | 33.355 2 | 33.405 8 |
| 文献[ | Airplane | 99.642 8 | 99.590 3 | 99.578 1 | 33.381 0 | 33.413 3 | 33.346 7 |
| 文献[ | Airplane | 99.605 2 | 99.612 0 | 99.630 3 | 33.402 5 | 33.442 8 | 33.502 9 |
| 文献[ | Airplane | 99.641 5 | 99.621 0 | 99.638 7 | 33.505 9 | 33.342 5 | 33.502 4 |
| 文献[ | Airplane | 99.630 0 | 99.590 0 | 99.670 0 | 33.430 0 | 33.390 0 | 33.510 0 |
表3 不同算法对测试图像的差分攻击结果对比 ( %)
Tab. 3 Results comparison of differential attacks on test images by different algorithms
| 算法 | 图像 | NPCR | UACI | ||||
|---|---|---|---|---|---|---|---|
| R | G | B | R | G | B | ||
| 本文算法 | Birds | 99.623 2 | 99.598 8 | 99.619 6 | 33.469 3 | 33.474 5 | 33.482 0 |
| Peppers | 99.661 2 | 99.621 5 | 99.607 8 | 33.421 5 | 33.476 2 | 33.558 1 | |
| Airplane | 99.603 6 | 99.598 7 | 99.615 5 | 33.389 0 | 33.365 3 | 33.437 2 | |
| 文献[ | Airplane | 99.615 8 | 99.587 4 | 99.617 8 | 33.375 1 | 33.355 2 | 33.405 8 |
| 文献[ | Airplane | 99.642 8 | 99.590 3 | 99.578 1 | 33.381 0 | 33.413 3 | 33.346 7 |
| 文献[ | Airplane | 99.605 2 | 99.612 0 | 99.630 3 | 33.402 5 | 33.442 8 | 33.502 9 |
| 文献[ | Airplane | 99.641 5 | 99.621 0 | 99.638 7 | 33.505 9 | 33.342 5 | 33.502 4 |
| 文献[ | Airplane | 99.630 0 | 99.590 0 | 99.670 0 | 33.430 0 | 33.390 0 | 33.510 0 |
| 算法 | 图像 | 明文图像 | 密文图像 | ||||
|---|---|---|---|---|---|---|---|
| R | G | B | R | G | B | ||
| 本文算法 | Birds | 7.469 9 | 7.481 4 | 7.160 5 | 7.999 9 | 7.999 5 | 7.999 6 |
| Peppers | 7.375 9 | 7.605 8 | 7.122 8 | 7.997 9 | 7.997 4 | 7.997 5 | |
| Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 4 | 7.999 9 | 7.999 8 | |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 5 | 7.999 6 | 7.999 5 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 3 | 7.999 3 | 7.999 3 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 3 | 7.999 2 | 7.999 3 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 6 | 7.999 5 | 7.999 7 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 4 | 7.999 4 | 7.999 5 |
表4 不同算法对测试图像的信息熵对比
Tab. 4 Comparison of information entropy of different algorithms on test images
| 算法 | 图像 | 明文图像 | 密文图像 | ||||
|---|---|---|---|---|---|---|---|
| R | G | B | R | G | B | ||
| 本文算法 | Birds | 7.469 9 | 7.481 4 | 7.160 5 | 7.999 9 | 7.999 5 | 7.999 6 |
| Peppers | 7.375 9 | 7.605 8 | 7.122 8 | 7.997 9 | 7.997 4 | 7.997 5 | |
| Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 4 | 7.999 9 | 7.999 8 | |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 5 | 7.999 6 | 7.999 5 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 3 | 7.999 3 | 7.999 3 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 3 | 7.999 2 | 7.999 3 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 6 | 7.999 5 | 7.999 7 |
| 文献[ | Airplane | 7.268 2 | 7.590 1 | 6.995 1 | 7.999 4 | 7.999 4 | 7.999 5 |
| 算法 | 测试图像尺寸 | 加密耗时/s | 解密耗时/s |
|---|---|---|---|
| 本文算法 | 256×256×3 | 0.326 344 | 0.424 544 |
| 512×512×3 | 1.429 988 | 1.866 272 | |
| 文献[ | 256×256×3 | 0.985 462 | 0.998 651 |
| 文献[ | 256×256×3 | 0.985 431 | 1.025 478 |
| 文献[ | 512×512×3 | 3.579 854 | 3.985 473 |
| 文献[ | 512×512×3 | 2.587 961 | 3.015 874 |
| 文献[ | 512×512×3 | 8.607 831 | 9.635 920 |
表5 不同算法的效率对比
Tab. 5 Comparison of efficiency of different algorithms
| 算法 | 测试图像尺寸 | 加密耗时/s | 解密耗时/s |
|---|---|---|---|
| 本文算法 | 256×256×3 | 0.326 344 | 0.424 544 |
| 512×512×3 | 1.429 988 | 1.866 272 | |
| 文献[ | 256×256×3 | 0.985 462 | 0.998 651 |
| 文献[ | 256×256×3 | 0.985 431 | 1.025 478 |
| 文献[ | 512×512×3 | 3.579 854 | 3.985 473 |
| 文献[ | 512×512×3 | 2.587 961 | 3.015 874 |
| 文献[ | 512×512×3 | 8.607 831 | 9.635 920 |
| [1] | 李珊珊,赵莉,张红丽.基于猫映射的图像灰度值加密[J].计算机应用, 2021, 41(4): 1148-1152. |
| LI S S, ZHAO L, ZHANG H L. Image grey level encryption based on cat map [J]. Journal of Computer Applications, 2021, 41(4): 1148-1152. | |
| [2] | GAN Z, CHAI X, ZHANG M, et al. A double color image encryption scheme based on three-dimensional Brownian motion [J]. Multimedia Tools and Applications, 2018, 77(21): 27919-27953. |
| [3] | 钟艳如,刘华役,孙希延,等.基于2D Chebyshev-Sine映射的图像加密算法[J].浙江大学学报(理学版), 2019, 46(2): 131-141. |
| ZHONG Y R, LIU H Y, SUN X Y, et al. 2D Chebyshev-Sine map for image encryption [J]. Journal of Zhejiang University (Science Edition), 2019, 46(2): 131-141. | |
| [4] | WANG X Y, LI P, ZHANG Y Q, et al. A novel color image encryption scheme using DNA permutation based on the Lorenz system [J]. Multimedia Tools and Applications, 2018, 77(5): 6243-6265. |
| [5] | MAN Z, GAO C, DAI Y, et al. Dynamic rotation medical image encryption scheme based on improved Lorenz chaos [J]. Nonlinear Dynamics, 2024, 112(15): 13571-13597. |
| [6] | 龙桂铃,汪绍荣.基于混沌Gyrator变换与压缩感知的光学图像加密方法[J].激光杂志, 2023, 44(5): 187-191. |
| LONG G L, WANG S R. Optical image encryption based on chaotic Gyrator transform and compressed sensing [J]. Laser Journal, 2023, 44(5): 187-191. | |
| [7] | HUA Z, JIN F, XU B, et al. 2D Logistic-Sine-coupling map for image encryption [J]. Signal Processing, 2018, 149: 148-161. |
| [8] | 王日宏,李祥,李娜.基于高斯扰动和混沌初始化的狼群算法[J].计算机工程与设计, 2019, 40(10): 2879-2884. |
| WANG R H, LI X, LI N. Wolf pack algorithm based on Gaussian disturbance and chaotic initialization [J]. Computer Engineering and Design, 2019, 40(10): 2879-2884. | |
| [9] | REZAEI B, GHANBARI H, ENAYATIFAR R. An image encryption approach using tuned Henon chaotic map and evolutionary algorithm [J]. Nonlinear Dynamics, 2023, 111(10): 9629-9647. |
| [10] | GAO X. A color image encryption algorithm based on an improved Hénon map [J]. Physica Scripta, 2021, 96(6): No.065203. |
| [11] | HUA Z, ZHOU Y, HUANG H. Cosine-transform-based chaotic system for image encryption [J]. Information Sciences, 2019, 480: 403-419. |
| [12] | WU X, KAN H, KURTHS J. A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps [J]. Applied Soft Computing, 2015, 37: 24-39. |
| [13] | CHAI X, GAN Z, YUAN K, et al. A novel image encryption scheme based on DNA sequence operations and chaotic systems [J]. Neural Computing and Applications, 2019, 31(1): 219-237. |
| [14] | 罗玉玲,欧阳雪,曹绿晨,等.遗传模拟退火算法和混沌系统的图像加密方法[J].西安电子科技大学学报, 2019, 46(5): 171-179. |
| LUO Y L, OUYANG X, CAO L C, et al. Image encryption using the genetic simulated annealing algorithm and chaotic systems [J]. Journal of Xidian University, 2019, 46(5): 171-179. | |
| [15] | HUANG X, YE G. An image encryption algorithm based on hyper-chaos and DNA sequence [J]. Multimedia Tools and Applications, 2014, 72(1): 57-70. |
| [16] | KAMAL S T, HOSNY K M, ELGINDY T M, et al. A new image encryption algorithm for grey and color medical images [J]. IEEE Access, 2021, 9: 37855-37865. |
| [17] | 徐彬烜.基于约瑟夫置换和图像滤波器扩散的图像加密方案[D].哈尔滨:哈尔滨工业大学, 2018: 22-24. |
| XU B X. Image encryption using Josephus permutation and filtering diffusion [D]. Harbin: Harbin Institute of Technology, 2018: 22-24. | |
| [18] | 杨璐,李青云.一种基于卷积神经网络压缩感知的图像加密算法[J].智能制造, 2024(5): 99-103. |
| YANG L, LI Q Y. An image encryption algorithm based on convolutional neural network compressive sensing [J]. Intelligent Manufacturing, 2024(5): 99-103. | |
| [19] | MADOURI Z B, HADJ SAID N, PACHA A ALI. A new pseudorandom number generator based on chaos in digital filters for image encryption [J]. Journal of Optics, 2024, 53(4): 3548-3563. |
| [20] | WANG X Y, ZHANG J J, ZHANG F C, et al. New chaotical image encryption algorithm based on Fisher-Yates scrambling and DNA coding [J]. Chinese Physics B, 2019, 28(4): No.040504. |
| [21] | NAIM M, PACHA A ALI. A new chaotic satellite image encryption algorithm based on a 2D filter and Fisher-Yates shuffling [J]. The Journal of Supercomputing, 2023, 79(15): 17585-17618. |
| [22] | SAIDI R, CHERRID N, BENTAHAR T, et al. Number of pixel change rate and unified average changing intensity for sensitivity analysis of encrypted in SAR interferogram [J]. Ingénierie des Systèmes d'Information, 2020, 25(5): 601-607. |
| [23] | KAUR M, KUMAR V. A comprehensive review on image encryption techniques [J]. Archives of Computational Methods in Engineering, 2020, 27(1): 15-43. |
| [1] | 袁卿宇, 高铁杠. 基于像素预测和秘密图像共享的可逆信息隐藏[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 780-787. |
| [2] | 张翔宇, 杨阳, 冯国徽, 秦川. 基于多目标优化的加密图像可逆信息隐藏[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1716-1723. |
| [3] | 郭媛, 王学文, 王充, 姜津霖. 基于动态网络的非线性置乱扩散同步图像加密[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 162-170. |
| [4] | 李珊珊, 赵莉, 张红丽. 基于猫映射的图像灰度值加密[J]. 计算机应用, 2021, 41(4): 1148-1152. |
| [5] | 沈子懿, 王卫亚, 蒋东华, 荣宪伟. 基于Hopfield混沌神经网络和压缩感知的可视化图像加密算法[J]. 计算机应用, 2021, 41(10): 2893-2899. |
| [6] | 葛江峡, 齐文韬, 兰林, 田雨, 朱和贵. 二维反三角超混沌系统及其在图像加密上的应用[J]. 计算机应用, 2019, 39(1): 239-244. |
| [7] | 金建国, 肖莹, 邸志刚. 基于混沌动态随机分组与调制分数阶FFT旋转因子的图像加密[J]. 计算机应用, 2016, 36(4): 966-972. |
| [8] | 江帆, 吴小天, 孙伟. 基于稀疏矩阵的Arnold数字图像加密算法[J]. 计算机应用, 2015, 35(3): 726-731. |
| [9] | 徐光宪 郭晓娟. 基于混沌系统的DNA图像加密算法[J]. 计算机应用, 2014, 34(11): 3177-3179. |
| [10] | 张文全 张烨 周南润. 基于随机分数梅林变换的非线性图像加密算法[J]. 计算机应用, 2013, 33(10): 2865-2867. |
| [11] | 王雅庆 周尚波. 基于分数阶陈氏混沌系统的图像加密算法[J]. 计算机应用, 2013, 33(04): 1043-1046. |
| [12] | 刘乐鹏 张雪峰. 基于混沌和位运算的图像加密算法[J]. 计算机应用, 2013, 33(04): 1070-1073. |
| [13] | 向涛 王安. 安全的LZW编码算法及其在GIF图像加密中的应用[J]. 计算机应用, 2012, 32(12): 3462-3465. |
| [14] | 龚黎华 曾绍阳 周南润. 基于频谱切割和二维Arnold变换的彩色图像加密算法[J]. 计算机应用, 2012, 32(09): 2599-2602. |
| [15] | 唐宋 徐桂兰 李清都. 基于高维超混沌系统和矩阵张量积的图像分组加密新算法[J]. 计算机应用, 2012, 32(08): 2262-2264. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||