《计算机应用》唯一官方网站

• •    下一篇

基于双重决策机制的深度符号回归算法

郭泽一1,李凤莲1,徐利春2   

  1. 1. 太原理工大学电子信息工程学院
    2. 太原理工大学物理与光电工程学院
  • 收稿日期:2025-02-25 修回日期:2025-04-07 发布日期:2025-04-24 出版日期:2025-04-24
  • 通讯作者: 李凤莲
  • 基金资助:
    山西省科技合作交流专项

Double decision mechanism-based deep symbolic regression

  • Received:2025-02-25 Revised:2025-04-07 Online:2025-04-24 Published:2025-04-24

摘要: 深度符号回归算法(DSR)由循环神经网络(RNN)自动化生成表达式树,进而获得较高的模型性能,但其存在无法兼顾表达式树准确性和结构简洁性的缺陷。本文提出一种基于双重决策机制的深度符号回归算法(DDSR),在RNN初步决策的基础上,利用双评分机制综合评估表达式树的结构简洁性和准确性。采用强化学习对表达式树生成进行训练,将表达式树生成视为序列决策过程,利用风险近端策略优化算法进行奖励反馈以更新下一批次模型参数。基于公共数据集的实验结果表明,相比DSR算法,DDSR算法在拟合度性能指标上最优提高了39.6%,最低提高了0. 1%,整体性能提升11.6%。

关键词: 符号回归, 深度学习, 评分机制, 近端策略优化算法, 风险寻优策略梯度

Abstract: The Deep Symbolics Regression (DSR) algorithm automatically generates the expression tree from the Recurrent Neural Network (RNN) to obtain high model performance. However, it has the defects that it can not take into account the accuracy and structural simplicity of the expression tree. In this paper, a Double Decision Mechanism-based Deep Symbolic Regression (DDSR) algorithm is proposed. Based on the initial decision of RNN, the double scoring mechanism is used to comprehensively evaluate the structural simplicity and accuracy of the expression tree. Reinforcement learning is used to train the expression tree generation, which is regarded as a sequential decision-making process, and the Risk Proximal Policy Optimization algorithm is used for reward feedback to update the model parameters of the next batch. The experimental results based on public data sets show that compared with DSR algorithm, DDSR algorithm has the optimal improvement of 39.6% in the fitting performance index, and the minimum improvement is 0.5% 1%, and the overall performance was improved by 11.6%.

Key words: Symbolic regression, Deep learning, Scoring mechanism, Proximal policy optimization algorithms, Risk-seeking policy gradient

中图分类号: