《计算机应用》唯一官方网站

• •    下一篇

基于条件生成对抗网络和混合注意力机制的图像隐写方法

李名1,1,王孟齐2,张爱丽3,任花1,窦育强4   

  1. 1. 河南师范大学
    2. 河南师范大学计算机与信息工程学院
    3. 河南师范大学 计算机与信息技术学院,河南 新乡 453007
    4.
  • 收稿日期:2025-03-03 修回日期:2025-04-07 发布日期:2025-04-24 出版日期:2025-04-24
  • 通讯作者: 王孟齐
  • 基金资助:
    河南省本科高校研究性教学项目;河南省高等学校重点科研项目;河南省科技攻关计划项目

Image steganography method based on conditional generative adversarial networks and hybrid attention mechanisms

  • Received:2025-03-03 Revised:2025-04-07 Online:2025-04-24 Published:2025-04-24

摘要: 摘 要: 目前以图藏图的深度隐写术存在隐写图像安全性不强以及恢复的秘密图像中存在图像失真的问题,难以实际应用于隐私保护和秘密通信。针对这一问题,提出了一种基于条件生成对抗网络和混合注意力机制的以图藏图隐写方法。首先,在生成器网络引入了混合注意模块,帮助生成器从通道和空间维度全面学习图像特征,提高了隐写图像的视觉质量。其次,引入残差连接降低了网络学习过程秘密图像的特征损失,并通过提取器和判别器对抗训练,实现了秘密图像的无噪声提取。然后生成器和隐写分析器对抗训练,提高了隐写图像的安全性。最后在COCO等公开数据集中进行实验,结果显示所提隐写方法与目前的图像隐写方法相比,隐写图像和解密图像的PSNR分别达到了40.58dB,36.63dB, 提高了5dB、4dB;两者的SSIM分别提高了3.34%、1.84%。在安全性方面,面对隐写分析器的检测,其准确率ACC为0.512,降低了0.12,误检率FNR为42.52%,提升了27%。

关键词: 摘 要: 深度学习, 图像隐写, 条件对抗生成网络, 混合注意力机制, 以图藏图

Abstract: Abstract: Current deep image-in-image steganography methods face challenges in practical applications for privacy protection and covert communication due to insufficient security of stego images and distortions in recovered secret images. To address these issues, a novel image-in-image steganography framework was proposed based on conditional generative adversarial networks (cGANs) and a hybrid attention mechanism. First, a hybrid attention module was introduced into the generator network to comprehensively learn image features from both channel and spatial dimensions, enhancing the visual quality of stego images. Second, residual connec-tions were incorporated to reduce feature loss of secret images during network training, and noise-free extraction of secret images was achieved through adversarial training between the extractor and discriminator. Additionally, adversarial training between the generator and a steganalyzer was implemented to improve stego image security. Experiments conducted on public datasets (e.g., COCO) demonstrated that the proposed method outperforms existing steganography methods. Specifically, the PSNR of stego images and decrypted secret images reached 40.58 dB and 36.63 dB, representing improvements of 5 dB and 4 dB, respectively, while their SSIM values increased by 3.34% and 1.84%. In terms of security, the steganalyzer achieved an accuracy (ACC) of 0.512 (a reduction of 0.12) and a false negative rate (FNR) of 42.52% (a 27% improvement), indicating significantly enhanced security against detection.

Key words: Keywords: Deep learning, Image steganography, Conditional adversarial generation network, Hybrid attention mechanism, image into image

中图分类号: