《计算机应用》唯一官方网站

• •    下一篇

面向机场跑道的探地雷达杂波抑制算法

李海丰1,刘文强2,李南莎1,桂仲成3   

  1. 1. 中国民航大学计算机科学与技术学院
    2. 中国民航大学
    3. 四川成都圭目智能机器人有限公司
  • 收稿日期:2025-03-11 修回日期:2025-04-18 发布日期:2025-05-16 出版日期:2025-05-16
  • 通讯作者: 李南莎
  • 基金资助:
    国家自然科学基金面上项目;天津市自然科学基金多元投入项目;天津市教委科研计划项目;天津市科技计划项目创新平台专项

Ground penetrating radar clutter suppression algorithm for airport runways

  • Received:2025-03-11 Revised:2025-04-18 Online:2025-05-16 Published:2025-05-16

摘要: 摘 要: 针对机场跑道探地雷达(GPR)数据中复杂背景杂波和层间强反射干扰信号的问题,提出一种基于改进U-Net的深度学习杂波抑制方法。该方法在U-Net网络的跳跃连接处引入细节增强模块(DE-Conv),增强网络对多尺度浅层特征中目标信号细节的捕捉能力;同时采用含杂波-无杂波图像对计算特征-像素双级融合损失函数优化训练过程。具体而言,通过共享权重编码器提取含杂波与无杂波数据的高维特征,计算特征级别损失指导编码器训练;解码器输出图像与对应的无杂波仿真图像计算像素级别损失以优化解码器性能。实验结果表明,在合成数据集上,该方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别达到37.1147 dB和0.9998;在真实机场跑道数据中,平均信杂比(SCR)和改善系数(IF)分别为8.28 dB和5.90 dB。以上4种指标相较基准模型分别提升0.9528 dB、0.0004、6.58 dB和5.32 dB。与RNMF、RPCA及同样基于深度学习方法的CR-Net相比,所提方法在杂波抑制效果和计算效率上均表现出优势。最后,大量的消融实验验证了细节增强模块和特征-像素双级损失函数对杂波去除和目标信号恢复的有效性。

关键词: 关键词: 探地雷达(GPR), 杂波抑制, 细节增强网络, 特征-像素双级融合损失, 机场跑道

Abstract: To address the problem of complex background clutter and inter-layer strong reflections in airport runway ground-penetrating radar (GPR) data, an improved U-Net-based deep learning method for clutter suppression was proposed. A detail enhancement module (DE-Conv) was introduced at the skip connections of U-Net to improve multi-scale feature extraction, and a feature-pixel dual-level fusion loss function was designed using paired clutter-contaminated and clutter-free images to optimize training. High-dimensional features were extracted by a shared-weight encoder for feature-level loss computation, while pixel-level loss was calculated between decoder outputs and clutter-free simulation images. The experimental results show that the proposed method achieves a peak signal-to-noise ratio (PSNR) of 37.1147 dB and a structural similarity index (SSIM) of 0.9998 on synthetic data, and an average signal-to-clutter ratio (SCR) of 8.28 dB and improvement factor (IF) of 5.90 dB on real runway data, outperforming baseline models by 0.9528 dB, 0.0004, 6.58 dB, and 5.32 dB in these four metrics. Compared with RNMF, RPCA, and the deep learning-based CR-Net method, superior clutter suppression performance and computational efficiency are demonstrated. The effectiveness of the DE-Conv module and dual-level loss function is further validated through ablation experiments.

Key words: Keywords: ground penetrating radar (GPR), clutter suppression, detail enhancement network, dual-level fusion loss of feature and pixel, airport runway

中图分类号: