《计算机应用》唯一官方网站

• •    下一篇

面向不均匀雾霾遥感图像的无监督去雾方法

刘雯玲,李勇,李佳慧,张厚康   

  1. 成都理工大学
  • 收稿日期:2025-07-11 修回日期:2025-09-22 发布日期:2025-10-13 出版日期:2025-10-13
  • 通讯作者: 李勇
  • 基金资助:
    四川省科技计划项目

Unsupervised dehazing method for remote sensing images with non-uniform haze

  • Received:2025-07-11 Revised:2025-09-22 Online:2025-10-13 Published:2025-10-13

摘要: 针对现有去雾方法在真实遥感图像中难以有效抑制由不均匀雾霾分布引发的伪影生成及纹理细节恢复不足的问题,提出一种面向不均匀雾霾遥感图像的无监督去雾方法。首先,基于循环生成对抗网络(CycleGAN),在生成器中设计残差多尺度注意力机制(RMAM),以扩大感受野并增强对多尺度纹理与结构信息的提取能力,从而有效恢复真实纹理细节信息。其次,设计雾霾分布增强模块(HDEM),通过显式增强雾霾特征的表达,结合双分支融合策略引导网络精准识别和处理不均匀雾霾,以缓解因雾霾分布感知不足造成的伪影问题。最后,在判别器中嵌入特征注意力机制,强化对图像局部结构与纹理真实性的判别能力,进一步提高去雾图像细节的还原能力。在合成遥感图像数据集SateHaze 1k和RICE上的实验结果表明,所提方法与最优方法相比在峰值信噪比(PSNR)上分别提高4.2%和2.4%,在结构相似度(SSIM)上分别提高0.96%和0.52%,在真实数据集RRSD300上的实验结果表明,所提方法与最优方法相比在自然图像质量评价(NIQE)和综合局部自然图像质量评价(IL-NIQE)上分别提升2.0%和0.45%。大量定量和定性实验结果表明,所提方法能够有效去除不均匀雾霾,并能够抑制伪影生成、恢复图像中的纹理细节。

关键词: 图像去雾, 遥感图像, 无监督方法, 注意力机制, 特征增强

Abstract: To address the problem that existing dehazing methods are difficult to effectively suppress artifact generation and insufficient texture detail recovery caused by non-uniform haze distribution in real remote sensing images, unsupervised dehazing method for remote sensing images with non-uniform haze was proposed. First, based on the Cycle-Consistent Generative Adversarial Network (CycleGAN), Within the generator, a Residual Multi-scale Attention Mechanism (RMAM) was designed to expand the receptive field and enhance the extraction of multi-scale texture and structural information, enabling effective restoration of realistic texture details. Second, a Haze Distribution Enhancement Module (HDEM) was designed to explicitly enhance the expression of haze features. Combined with a dual-branch fusion strategy, it guided the network to accurately identify and process non-uniform haze, alleviating the artifact problem caused by insufficient haze distribution perception. Finally, a feature attention mechanism was embedded in the discriminator to strengthen its ability to distinguish the authenticity of local structures and textures, thus improving the restoration quality of dehazed images. Experimental results on the synthetic remote sensing datasets SateHaze 1k and RICE, the proposed method outperforms the best-performing baseline by 4.2% and 2.4% in Peak Signal-to-Noise Ratio (PSNR), and by 0.96% and 0.52% in Structural Similarity Index (SSIM), respectively. Experimental results on the real-world dataset RRSD300, the proposed method outperforms the best-performing baseline by 2.0% and 0.45% in Natural Image Quality Evaluator (NIQE) and Integrated Local NIQE (IL-NIQE), respectively. Extensive quantitative and qualitative results demonstrate that the proposed method effectively removes non-uniform haze, suppresses artifact generation, and restores texture details in remote sensing images.

Key words: image dehazing, remote sensing images, unsupervised method, attention mechanism, feature enhancement

中图分类号: