计算机应用 ›› 2011, Vol. 31 ›› Issue (05): 1230-1232.DOI: 10.3724/SP.J.1087.2011.01230
李丽娟,阳琼
LI Li-juan, YANG Qiong
摘要: 针对简单遗传算法(SGA)在图像恢复应用中寻求匹配近似解时,存在匹配度低及匹配值差异较大,导致很难得到所需近似解的问题,设计了一种新的图像恢复方法。该方法采用的方案是将简单遗传算法与粗糙自适应算法相结合,按照匹配数值对SGA在其搜索解空间所得匹配近似解进行明暗标记分类,然后按照粗糙自适应模型进行相应地分类处理,以增强图像恢复算法的鲁棒性。通过与逆滤波、维纳滤波和简单遗传算法的对比实验表明,粗糙自适应遗传算法(RAGA)能更好地保留图像边缘及提高峰值信噪比值。