计算机应用 ›› 2005, Vol. 25 ›› Issue (12): 2789-2791.

• 人工智能 • 上一篇    下一篇

改善遗传神经网络收敛性的研究

李享梅1,赵天昀2   

  1. 1.成都信息工程学院网络工程系; 2.郑州大学信息管理系
  • 收稿日期:1900-01-01 修回日期:1900-01-01 发布日期:2005-12-01 出版日期:2005-12-01

Study on improving the convergence of genetic neural networks

<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>L<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>I<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>X<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>a<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>g<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>-<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>m<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>e<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a><<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>s<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>p<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>><a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>1<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a><<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>/<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>s<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>p<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>><a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>,<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>Z<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>H<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>A<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>O<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>T<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>a<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>-<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>y<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a><<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>s<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>p<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>><a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>2<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a><<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>/<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>s<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>p<a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>><a href="https://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>   

  1. 1.Department of Network Engineering,Chengdu University of Information Technology,Chengdu Sichuan 610225,China;2.Department of Information Management,Zhengzhou University,Zhengzhou Henan 450001,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2005-12-01 Published:2005-12-01

摘要: 针对BP神经网络中采用的梯度下降法局部搜索能力强、全局搜索能力差和遗传神经网络中采用的遗传算法全局搜索能力强、局部搜索能力差的特点,提出了一种集梯度下降法和遗传算法优点为一体的混合智能学习法(Hybrid Intelligence learning algorithm),简称HI算法,并将其应用到优化多层前馈型神经网络连接权问题。对该算法进行了设计和实现,从理论和实际两方面证明混合智能学习法神经网络与BP神经网络和基于遗传算法的神经网络相比有更好的运算性能、更快的收敛速度和更高的精度。

关键词: 遗传算法, 遗传神经网络, 人工神经网络, BP神经网络, 梯度下降法, 混合智能学习法

Abstract: To describe the advantage and shortcoming of gradient descent algorithm and genetic algorithm for training connection weights of neural networks,a new algorithm combined genetic algorithm with gradient descent algorithm was proposed,referred as to Hybrid Intelligence learning algorithm(HI).Applied to the problem of optimizing the connection weight of the feedforward neural networks,the algorithm was feasible.The design and realization of HI was introduced.And it was proved that hybrid intelligence learning algorithm is better,faster and more accurate than gradient descent algorithm and genetic algorithm in theory and practice.

Key words: Genetic Algorithms(GA), GA neural networks, artificial neural networks, BP neural network, gradient descent algorithm, HI algorithms(Hybrid Intelligence learning algorithm)

中图分类号: