计算机应用 ›› 2009, Vol. 29 ›› Issue (06): 1569-1571.

• 人工智能 • 上一篇    下一篇

基于人工鱼群算法的动态模糊聚类

刘白1,周永权2,谢竹诚2   

  1. 1. 广西民族大学
    2. 广西民族大学数学与计算机科学学院
  • 收稿日期:2008-12-08 修回日期:2009-01-05 发布日期:2009-06-10 出版日期:2009-06-01
  • 通讯作者: 刘白
  • 基金资助:
    省部级基金,校级基金;省部级基金

Dynamic fuzzy clustering method based on artificial fish swarm algorithm

  • Received:2008-12-08 Revised:2009-01-05 Online:2009-06-10 Published:2009-06-01

摘要: 针对传统的模糊C-均值(FCM)聚类算法的聚类有效性对空间样本分布的依赖性等缺点,提出了一种新的基于人工鱼群算法的动态模糊聚类。通过引入模糊等价矩阵来表示高维样本之间的相似程度,并将高维样本映射到二维平面。然后利用人工鱼群算法不断优化二维样本的坐标值,使样本之间的欧氏距离向样本间的模糊等价矩阵趋近,最终实现模糊聚类。该方法克服了聚类有效性对高维样本空间分布的依赖性并同时提高了效率。仿真实验结果证明了该算法是有效的,具有聚类速度快、精度高等特点。

关键词: 人工鱼群算法, 模糊相似矩阵, 高维样本, 模糊等价矩阵, artificial fish swarm algorithm, fuzzy similar matrix, high dimension sample, fuzzy equivalence matrix

Abstract: In order to avoid the dependence of the validity of clustering on the space distribution of high dimensional samples of Fuzzy C-Means (FCM), a dynamic fuzzy clustering method based on artificial fish swarm algorithm was proposed. By introducing a fuzzy equivalence matrix to the similar degree among samples, the high dimensional samples were mapped to two dimensional planes. Then the Euclidean distance of the samples was approximated to the fuzzy equivalence matrix gradually by using artificial fish swarm algorithm to optimize the coordinate values. Finally, the fuzzy clustering was obtained. The proposed method, not only avoided the dependence of the validity of clustering on the space distribution of high dimensional samples, but also raised the clustering efficiency. Experiment results show that it is an efficient clustering algorithm with rapid speed and high precision.

中图分类号: